• Acta Optica Sinica
  • Vol. 38, Issue 5, 0511002 (2018)
Zhiling Yuan1, Junbo Chen1, Weiyuan Huang1, Bo Wei1, and Zhilie Tang1、2、*
Author Affiliations
  • 1 School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006, China
  • 2 National Exemplary Center for Experiment Teaching of Basic Courses in Physics, South China Normal University, Guangzhou, Guangdong 510006, China
  • show less
    DOI: 10.3788/AOS201838.0511002 Cite this Article Set citation alerts
    Zhiling Yuan, Junbo Chen, Weiyuan Huang, Bo Wei, Zhilie Tang. Speckle Noise Reduction of Optical Coherence Tomography Based on Robust Principle Component Analysis Algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0511002 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Brezinski M E[M]. Optical coherence tomography: principles and applications, 333-394(2005).

    [3] Choma M A, Sarunic M V, Yang C H et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003). http://europepmc.org/abstract/MED/19466106

    [4] Goodman J W[M]. Speckle phenomena in optics: theory and applications, 165-166(2009).

    [5] Yao X L, Ji K H, Liu G P et al. Blood flow imaging by optical coherence tomography based on speckle variance and doppler algorithm[J]. Laser & Optoelectronics Progress, 54, 031702(2017).

    [6] Popov I, Weatherbee A, Vitkin I A. Statistical properties of dynamic speckles from flowing Brownian scatterers in the vicinity of the image plane in optical coherence tomography[J]. Biomedical Optics Express, 8, 2004(2017). http://www.ncbi.nlm.nih.gov/pubmed/28736652

    [7] Yang L, Hong W, Wang C et al. Flow velocity measurement based on speckle in optical coherence tomography[J]. Chinese Journal of Lasers, 39, 0504002(2012).

    [8] Liba O, Lew M D, Sorelle E D et al. Erratum: speckle-modulating optical coherence tomography in living mice and humans[J]. Nature Communications, 8, 15845(2017). http://www.nature.com/articles/ncomms16131

    [9] Adler D C, Ko T H, Fujimoto J G. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter[J]. Optics Letters, 29, 2878-2880(2004). http://www.opticsinfobase.org/ol/abstract.cfm?id=82021

    [10] Jian Z P, Yu Z X, Yu L F et al. Speckle attenuation in optical coherence tomography by curvelet shrinkage[J]. Optics Letters, 34, 1516-1518(2009). http://pubmedcentralcanada.ca/pmcc/articles/PMC2860949/

    [11] Wang L Z, Meng Z, Yao X S et al. Adaptive speckle reduction in OCT volume data based on block-matching and 3-d filtering[J]. IEEE Photonics Technology Letters, 24, 1802-1804(2012). http://ieeexplore.ieee.org/document/6310105/

    [12] Yu H C, Gao J L, Li A T. Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images[J]. Optics Letters, 41, 994-997(2016). http://europepmc.org/abstract/MED/26974099

    [13] Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 26, 17-32(1981). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1102568

    [14] Wright J, Ganesh A, Rao S et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices[C]. Advances in Neural Information Processing Systems, 2080-2088(2009).

    [15] Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 9, 717(2009). http://biomet.oxfordjournals.org/external-ref?access_num=10.1007/s10208-009-9045-5&link_type=DOI

    [16] Candès E J, Li X D, Ma Y et al. Robust principal component analysis?[J]. Journal of the ACM, 58, 11(2009).

    [17] Lin ZC, Chen MM, MaY, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv Preprint arXiv:1009.5055, 2010.

    [18] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 44, 800-801(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4550695

    [19] Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 81, 425-455(1994). http://biomet.oxfordjournals.org/biomet/article/81/3/425/256924/Ideal-spatial-adaptation-by-wavelet-shrinkage

    [20] Welvaert M, Rosseel Y. On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data[J]. Plos One, 8, e77089(2013). http://pubmedcentralcanada.ca/articlerender.cgi?accid=PMC3819355

    [21] Anfinsen S N, Doulgeris A P, Eltoft T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 3795-3809(2009). http://ieeexplore.ieee.org/document/5071293/

    Zhiling Yuan, Junbo Chen, Weiyuan Huang, Bo Wei, Zhilie Tang. Speckle Noise Reduction of Optical Coherence Tomography Based on Robust Principle Component Analysis Algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0511002
    Download Citation