• Photonic Sensors
  • Vol. 1, Issue 2, 166 (2011)
Adrian PODOLEANU*
Author Affiliations
  • Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK
  • show less
    DOI: 10.1007/s13320-011-0029-0 Cite this Article
    Adrian PODOLEANU. Route to OCT From OFS at University of Kent[J]. Photonic Sensors, 2011, 1(2): 166 Copy Citation Text show less
    References

    [1] A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electronics Letters, vol. 18, no. 9, pp. 392-393, 1982.

    [2] A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Optics Letters, vol. 21, no. 21, pp. 1789-1791, 1996.

    [3] A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” Journal of Biomedical Optics, vol. 3, no. 1, pp. 12-20, 1998.

    [4] A. D. Kersey, M. Corke, and D. A. Jackson, “Linearized polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electronics Letters, vol. 20, no. 5, pp. 209-21, 1984.

    [5] A. D. Kersey and D. A. Jackson, “Current sensing utilizing heterodyne-detection of the Faraday-effect in single-mode optical fiber,” Journal of Lightwave Technology, vol. 4, no. 6, pp. 640-644, 1986.

    [6] A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, and D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electronics Letters, vol. 24, no. 8, pp. 472-474, 1988.

    [7] S. C. Bartlett, F. Farahi, and D. A. Jackson, “Common-path optical fiber heterodyne interferometric current sensor,” Proc. SPIE, vol. 1504, pp. 247-250, 1991.

    [8] A. D. Kersey, D. A. Jackson, and M. A. Corke, “A simple fiber Fabry-Perot sensor,” Optics Communications, vol. 45, no. 2, pp. 71-74, 1983.

    [9] D. J. Webb, J. D. C.Jones, and D. A. Jackson, “Extended-range interferometry using a coherence-tuned, synthesized dual-wavelength technique with multimode fiber links,” Electronics Letters, vol. 24, no. 18, pp. 1173-1175, 1988.

    [10] Y. J. Rao, D. J. Webb, and D. A. Jackson, “Design study of fiber-optic based Fabry-Perot type interferometric sensors using low-coherence signal recovery,” Proc. SPIE, vol. 2070, pp. 360-371, 1994.

    [11] S. C. Bartlett, F. Farahi, and D. A. Jackson, “Current sensing using Faraday-rotation and a common path optical fiber heterodyne interferometer,” Review of Scientific Instruments, vol. 61, no. 9, pp. 2433-2435, 1990.

    [12] L. A. Ferreira, J. L. Santos, and F. Farahi, “Polarization insensitive fiber-optic white-light interferometry,” Optics Communications, vol. 114, no. 5-6, pp. 386-392, 1995.

    [13] G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Extended-range, low coherence dual wavelength interferometry using a superfluorescent fiber source and chirped fiber Bragg gratings,” Optics Communications, vol. 134, no. 1-6, pp. 341-348, 1997.

    [14] M. Corke, J. D. C. Jones, A. D. Kersey, and D. A. Jackson, “Two-dimensional laser Doppler velocimeter using polarization-maintaining single-mode fibers,” in Optical Fiber Sensors, (Optical Society of America, 1985), paper ThGG6.vol. OFC/OFS 85’, pp. 146, 1985.

    [15] R. P. Tatam, C. N. Pannell, and J. D. C. Jones, “Full polarization state control utilizing linearly birefringent monomode optical fiber,” Journal of Lightwave Technology, vol. 5, no. 7, pp. 980-985, 1987.

    [16] D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Applied Optics, vol. 19, no. 17, pp. 2926-2929, 1980.

    [17] P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” Journal of Lightwave Technology, vol. 7, no. 4, pp. 703-716, 1989.

    [18] J. L. Santos and D. A. Jackson, “Time-division multiplexing exploiting low-coherence interferometry with a multimode laser diode source,” Proc. SPIE, vol. 1586, pp. 184-193, 1992.

    [19] A. S. Gerges, T. P. Newson, and D. A. Jackson, “Interferometric fiber-optic sensing using a multimode laser diode source,” Proc. SPIE, vol. 1504, pp. 176-179, 1991.

    [20] Y. J. Rao and D. A. Jackson, “Long-distance fiberoptic white-light displacement sensing system using a source-synthesizing technique,” Electronics Letters, vol. 31, no. 4, pp. 310-312, 1995.

    [21] L. A. Ferreira and J. L. Santos, “Fiber optic interferometric sensor based on source coherence synthesis by dynamical spectral filtering of a superluminescent source,” Optics Communications, vol. 114, no. 5-6, pp. 381-385, 1995.

    [22] C. Boulet, M. Hathaway, and D. A. Jackson, “Fiber-optic-based absolute displacement sensors at 1500 nm by means of a variant of channeled spectrum signal recovery,” Optics Letters, vol. 29, no. 14, pp. 1602-1604, 2004.

    [23] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178-1181, 1991.

    [24] A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Optics Letters, vol. 23, no. 3, pp. 147-149, 1998.

    [25] C. C. Rosa, J. Rogers, J. Pedro, R. Rosen, and A. Podoleanu, “Multi-scan time domain OCT for retina imaging,” Applied Optics, vol. 46, no. 10, pp. 1795-1808, 2007.

    [26] A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Progress in Retinal and Eye Research, vol. 27, no. 4, pp. 464-499, 2008.

    [27] A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electronics Letters, vol. 34, no. 11, pp. 1088-1090, 1998.

    [28] A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, R. B. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L. A. Yannuzzi, Y. Fisher, D. Orlock, R. Weitz, J. A. Rogers, S. Dunne, and A. Boxer, “Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy,” Journal of Biomedical Optics, vol. 9, no. 1, pp. 86-93, 2004.

    [29] L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Optics Letters, vol. 32, no. 23, pp. 3423-3425, 2007.

    [30] A. Gh. Podoleanu and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,” Applied Optics, vol. 38, no. 10, pp. 2116-2127, 1999.

    [31] R. B. Rosen, P. Garcia, A. Gh. Podoleanu, R. G. Cucu, G. Dobre, M. E. J. Van Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, and R. Weitz, “En-face flying spot OCT/ophthalmoscope optical coherence tomography, technology and applications,” in series: biological and medical physics, biomedical engineering, Drexler, Wolfgang, Fujimoto, G. James, Eds., 2008, XXVIII, 1357, Berlin Heidelberg: Springer, 2008, pp. 448-474.

    [32] A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, and P. Garcia, “Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system,” Journal of Biomedical Optics, vol. 12, no. 1, pp. 014019, 2007.

    [33] A. Bradu, L. Ma, J. W. Bloor, and A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of drosophila melanogaster larval hear,” J. Biophoton., vol. 2, no. 6-7, pp. 380-388, 2009.

    [34] A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in human retina,” Optics Letters, vol. 22, no. 13, pp. 1039-1041, 1997.

    [35] A. Gh. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Optics Communications, vol. 191, no. 1-2, pp. 21-30, 2001.

    [36] L. Plesea and A. Gh. Podoleanu, “Direct corneal elevation measurements using multiple delay en-face OCT,” Journal of Biomedical Optics, vol. 13, no. 5, pp. 054054, 2008.

    [37] J. Wang, C. Dainty, and A. Podoleanu, “Multiple delay lines full-field optical coherence tomography,” Proc. SPIE, vol. 7139, pp. 71390A, 2008.

    [38] A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, and R. Rosen, “Sequential OCT and confocal imaging,” Optics Letters, vol. 29, no. 4, pp. 364-366, 2004.

    [39] I. Trifanov, M. Hughes, R. B. Rosen, and A. Gh. Podoleanu, “Quasi-simultaneous OCT/confocal imaging,” Journal of Biomedical Optics, vol. 13, no. 4, pp. 044015, 2008.

    [40] A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 1176-1184, 1999.

    [41] C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line optical coherence tomography,” Optics Letters, vol. 30, no. 24, pp. 3263-3265, 2005.

    [42] S. R. Taplin, A. Gh. Podoleanu, D. J. Webb, D. A. Jackson, and S. R. Nattrass, Applications of low coherence interferometry to dynamic oil film thickness measurement, Applications of Photon Technology, G. A. Lambropoulos and R. A. Lessard, Eds. New York: Plenum Press, 1997, pp. 863-869.

    [43] S. Taplin, A. Gh. Podoleanu, D. J. Webb, and D. A. Jackson, “Displacement sensor using channeled spectrum dispersed on a linear CCD array,” Electronics Letters, vol. 29, no. 10, pp. 896-897, 1993.

    [44] A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, “Channelled spectrum liquid refractometer,” Rev. Sci. Instr., vol. 64, no. 10, pp. 3028-3029, 1993.

    [45] A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, “Channeled spectrum display using a CCD array for student laboratory demonstrations,” European J. Phys., vol. 15, no. 5, pp. 266-271, 1994.

    [46] A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, “Theoretical study of Talbot-like bands observed using a laser diode below threshold,” Pure and Applied Optics: Journal of the European Optical Society Part A, vol. 7, no. 3, pp. 517-536, 1998.

    [47] A. Gh. Podoleanu, S. Taplin, D. J. Webb, and D. A. Jackson, “Talbot-like bands for laser diode below threshold,” Pure and Applied Optics: Journal of the European Optical Society Part A, vol. 6, no. 3, pp. 413-424, 1997.

    [48] A. Gh. Podoleanu, “Unique interpretation of Talbot bands and Fourier domain white light interferometry,” Optics Express, vol. 15, no. 15, pp. 9867-9876, 2007.

    [49] D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Optics Express, vol. 16, no. 13, pp. 9654-9670, 2008.

    [50] A. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Optics Letters, vol. 32, no. 16, pp. 2300-2302, 2007.

    [51] M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electronics Letters, vol. 45 no. 3, pp. 182-183, 2009.

    [52] R. G. Cucu, A. Gh. Podoleanu. A. Rogers, J. Pedro, and R. B. Rosen, “Combined confocal scanning ophthalmoscopy/en face T-scan based ultrahigh resolution OCT of the human retina in vivo,” Optics Letters, vol. 31, no. 11, pp. 1684-1687, 2006.

    [53] R. G. Cucu, J. A. Rogers, M. W. Hathaway J. Pedro, A. Gh. Podoleanu, and R. B. Rosen, “Combined confocal/en face optical coherence tomography imaging of the human eye fundus in vivo in the 1050 nm spectral region,” Proc. SPIE, vol. 6429, pp. 642903-01- 642903-05, 2007.

    [54] A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne “Three dimensional OCT images from retina and skin,” Optics Express, vol. 7, no. 9, pp. 292-298, 2000.

    [55] M. Khandwala, B. R. Penmetsa, S. Dey, J. B. Schofield, C. A. Jones, and A. Podoleanu, “Imaging of periocular basal cell carcinoma using en face optical coherence tomography: a pilot study,” Clinical science: Br J Ophthalmol, vol. 94, no. 10, pp. 1332-1336, 2010.

    [56] A. G. Bibas, A. Gh. Podoleanu, R. G. Cucu, M. Bonmarin, G. M. Dobre, V. M. M Ward, E. Odell, A. Boxer, M. L Harries, and M. J. Gleeson, “3-D optical coherence tomography of the laryngeal mucosa,” Clinical Otolaryngology, vol. 29, no. 6, pp. 713-720, 2004.

    [57] B. T. Amaechi, A. Gh. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” Journal Biomedical Optics, vol. 8, no. 4, pp. 642-647, 2003.

    [58] C. D. Russell, K. Kosmidis, R. A. Black George Dobre, and A. Gh. Podoleanu, “Flying spot en-face OCT for monitoring cell distribution in collagen-based constructs,” Proc. SPIE, vol. 6079, pp. 60790Q-1- 60790Q-5, 2006.

    [59] H. Liang, M. G. Cid, R. Cucu, G. M. Dobre, J. Pedro, D. Saunders, and A. Gh. Podoleanu, “Application of optical coherence tomography to examination of easel paintings,” Optics Express, vol. 13, no. 16, pp. 6133-6144, 2005.

    [60] M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics, vol. 49, no. 1, pp. 99-107, 2010.

    [61] C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line optical coherence tomography,” Optics Letters, vol. 30, no. 24, pp. 3263-3265, 2005.

    [62] M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electronics Letters, vol. 45, no. 12, pp. 623-624, 2009.

    [63] R. G. Cucu, M. W. Hathaway, A. Gh. Podoleanu, and R. B. Rosen, “Variable lateral size imaging of the human retina in vivo by combined confocal/en face optical coherence tomography with closed loop OPD-locked low coherence interferometry based active axial eye motion tracking,” Proc. SPIE, vol. 7554, pp. 75540J, 2010.

    [64] A. Gh. Podoleanu, “Unbalanced versus balanced operation in an OCT system,” Applied Optics, vol. 39, no. 1, pp. 173-182, 2000.

    [65] A. Gh. Podoleanu and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,” Applied Optics, vol. 38, no. 10, pp. 2116-2127, 1999.

    [66] C. C. Rosa and A. Podoleanu, “Limitation of the achievable signal to noise ratio in OCT due to mismatch of the balanced receiver,” Applied Optics, vol. 43, no. 25, pp. 4802-4815, 2004.

    [67] S. Sherif, C. Rosa, C.Flueraru, S. Chang, Y. Mao, and A. Gh. Podoleanu, “Statistics of the depth-scan photocurrent in time-domain optical coherence tomography,” J. Opt. Soc. Am. A, vol. 25, no.1, pp.16-20, 2008.

    [68] A. Gh. Podoleanu, R. G. Cucu, and D. A. Jackson, “Signal to noise ratio in an OCT/confocal system and penetration depth in OCT,” Proc. SPIE, vol. 4251, pp. 11-20, 2001.

    [69] D. Merino, C. Dainty, A. Bradu, and A. Gh. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Optics Express, vol. 14, no. 8, pp. 3345-3353. 2006.

    [70] S. Tuohy and A. Gh. Podolean, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Optics Express, vol. 18, no. 4, pp. 3458-3476, 2010

    Adrian PODOLEANU. Route to OCT From OFS at University of Kent[J]. Photonic Sensors, 2011, 1(2): 166
    Download Citation