• Opto-Electronic Engineering
  • Vol. 45, Issue 8, 170586 (2018)
Song Zhiming1、2、*, Liu Guangqian2, and Qu Zhongquan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170586 Cite this Article
    Song Zhiming, Liu Guangqian, Qu Zhongquan. The auto guiding system combined with sub-pixel real-time gray projection algorithm[J]. Opto-Electronic Engineering, 2018, 45(8): 170586 Copy Citation Text show less
    References

    [1] Mandrini C H, Schmieder B, Démoulin P, et al. Topological analysis of emerging bipole clusters producing violent solar events[J]. Solar Physics, 2014, 289(6): 2041–2071.

    [2] Deng L H. Study on the auto guide unit system of one-meter infrared solar telescope in yunnan observatory[D]. Kunming: Yunnan Observatories, Chinese Academy of Sciences, 2009.

    [3] Guo J J, Yang Y F, Feng S, et al. High precision guide method for the solar telescope[J]. Chinese Science Bulletin, 2015, 61(10): 1112–1120.

    [4] Liu G Q. Research and realization on control system of one meter infrared solar teleseope[D]. Kunming: Yunnan Observatories, Chinese Academy of Sciences, 2011.

    [5] Liu G Q, Yang L, Deng L H, et al. Influence of atmospheric turbulence on the accuracy of astronomical telescope auto- guiding system[J]. Acta Optica Sinica, 2013, 33(1): 7–11.

    [6] Liu G Q, Cheng X M, Song T F, et al. The influence and control of wind loading on the one meter solar telescope servosystem[ J]. Opto-Electronic Engineering, 2011, 38(6): 50–58.

    [7] Li Y Y, Liu G Q. The study on the application of the stabilized control system for the tip-tilt mirror image in NVST[J]. Astronomical Research & Technology, 2016, 13(1): 82–92.

    [8] Close L M, McCarthy D W. High resolution imaging with a tip-tilt Cassegrain secondary[J]. Publications of the Astronomical Society of the Pacific, 1994, 106(695): 77–86.

    [9] Didkovsky L V, Dolgushyn A, Marquette W, et al. High-order adaptive optical system for big bear solar observatory[J]. Proceedings of SPIE, 2003, 4853: 630–639.

    [10] Dun G T, Qu Z Q. Design of the polarimeter for the fibre arrayed solar optical telescope[J]. Acta Astronomica Sinica, 2012, 53(4): 342–352.

    [11] Qu Z Q. A fiber arrayed solar optical telescope (FASOT)[ C]//Proceedings of 6th Solar Polarization Workshop, 2011, 437: 423.

    [12] Li C S, Jiang A M. The realization of sst's correlation calculation based on FPGA[J]. Journal of Astronautics, 2008, 28(4): 1350–1357.

    [13] Wang X Y. The research of real-time electronic image stabilization algorithm based on gray projection[D]. Hangzhou: Zhejiang University, 2006.

    [14] Zhang Y C, Wang F, Zhao J, et al. Fast digital image stabilization based on characteristic peak of projection matching[J]. Optics and Precision Engineering, 2015, 23(6): 1768–1773.

    [15] Sun H. Fast gray projection algorithm and its application to electronic image stabilization[J]. Optics and Precision Engineering, 2007, 15(3): 412–416.

    [16] Zhang Y X, Zhao X X, Zhang W G, et al. An improved electronic image stabilization algorithm based on gray projection algorithm[ J]. Microelectronics & Computer, 2008, 25(11): 212–215.

    [17] Li B, Wang X T, Yang C Q, et al. Three-point locally adaptive searching in gray scale projection algorithm for electronic image stabilization[J]. Opto-electronic Engineering, 2004, 31(9): 69–72.

    [18] Sun H, Zhang Y X, Xiong J W, et al. The application of high resolution gray projection algorithm in electronic image stabilization technology[J]. Optical Technique, 2006, 32(3): 378–380.

    Song Zhiming, Liu Guangqian, Qu Zhongquan. The auto guiding system combined with sub-pixel real-time gray projection algorithm[J]. Opto-Electronic Engineering, 2018, 45(8): 170586
    Download Citation