• Photonic Sensors
  • Vol. 2, Issue 4, 289 (2012)
Marco CONSALES, Marco PISCO, and and Andrea CUSANO*
Author Affiliations
  • Optoelectronic Division - Department of Engineering, University of Sannio, C.so Garibaldi 107, 82100, Benevento, Italy
  • show less
    DOI: 10.1007/s13320-012-0095-y Cite this Article
    Marco CONSALES, Marco PISCO, and Andrea CUSANO. Lab-on-Fiber Technology: a New Avenue for Optical Nanosensors[J]. Photonic Sensors, 2012, 2(4): 289 Copy Citation Text show less
    References

    [1] P. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358-362, 2003.

    [2] J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847-851, 2003.

    [3] O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF handbook: optical short range transmission systems. Berlin, Germany: Springer-Verlag, 2008.

    [4] M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, et al., “Microstructured polymer optical fibre,” Optics Express, vol. 9, no. 7, pp. 319-327, 2001.

    [5] A. Cusano, M. Consales, M. Pisco, A. Crescitelli, A. Ricciardi, E. Esposito, et al., “Lab on fiber technology and related devices, part I: a new technological scenario; lab on fiber technology and related devices, part II: the impact of the nanotechnologies,” in Proc. SPIE, vol. 8001, pp. 800122, 2011.

    [6] A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured fiber Bragg gratings,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1663-1697, 2009.

    [7] A. Cusano, M. Giordano, A. Cutolo, M. Pisco, and M. Consales, “Integrated development of chemoptical fiber nanosensors,” Current Analytical Chemistry, vol. 4, no. 4, pp. 296-315, 2008.

    [8] J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser and Photonics Reviews, vol. 2, no. 4, pp. 275-289, 2008.

    [9] B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Optics Express, vol. 9, no. 13, pp. 698-713, 2001.

    [10] F. J. Arregui, Sensors based on nanostructured materials. New York: Springer, 2009.

    [11] B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Optical Fiber Technology, vol. 15, no. 3, pp. 209-221, 2009.

    [12] A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, et al., “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Materials, vol. 6, no. 5, pp. 336-347, 2007.

    [13] E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. A. Capasso, “A technique to transfer metallic nanoscale patterns to small and nonplanar surfaces,” ACS Nano, vol. 3, no. 1, pp. 59-65, 2009.

    [14] D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, et al., “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Letters, vol. 11, no. 2, pp. 632-636, 2011.

    [15] D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Applied Physics Letters, vol. 88, no. 5, pp. 053501, 2006.

    [16] M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: towards multi-funcional optical nanoprobes,” ACS Nano, vol. 6, no. 4, pp. 3163-3170, 2012.

    [17] G.. Brambilla, “Optical fibre nanowires and microwires: a review,” Journal of Optics, vol. 12, no. 4, pp. 043001, 2010.

    [18] J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in germanosilicate fibre by UV post-processing,” Electronics Letters, vol. 30, no. 16, pp. 1344-1345, 1994.

    [19] M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electronics Letters, vol. 31, no. 12, pp. 1007-1009, 1995.

    [20] D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Optics Communications, vol. 127, no. 4-6, pp. 200-204, 1996.

    [21] A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: analysis and fabrication,” Electronics Letters, vol. 41, no. 8, pp. 466-468, 2005.

    [22] R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” Journal of Lightwave Technology, vol. 13, no. 12, pp. 2354-2358, 1995.

    [23] L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1405-1410, 1997.

    [24] A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fiber Bragg gratings: towards new all fiber high sensitivity chemical sensors,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 12, pp. 734-741, 2005.

    [25] A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber and Integrated Optics, vol. 7, no. 1, pp. 51-62, 1998.

    [26] A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Optics Express, vol. 15, no. 23, pp. 15011-15021, 2007.

    [27] A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Optics Express, vol. 16, no. 20, pp. 15332-15342, 2008.

    [28] D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Optics Express, vol. 17, no. 2, pp. 1042-1054, 2009.

    [29] W. C. Du, X. M. Tao, and H. Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technology Letters, vol. 11, no. 1, pp. 105-107, 1999.

    [30] K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Optics Express, vol. 15, no. 24, pp. 15848-15853, 2007.

    [31] M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” Journal of Lightwave Technology, vol. 26, no. 12, pp. 1613-1625, 2008.

    [32] S. W. James and R. P. Tatam, “Optical fibre long period grating sensors: characteristics and application,” Measurement Science and Technology, vol. 14, no. 5, pp. R49-R61, 2003.

    [33] N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fibre long period gratings with Langmuir-Blodgett thin-film overlays,” Optics Letters, vol. 27, no. 9, pp. 686-688, 2002.

    [34] I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of overlays by electrostatic self assembly in long-period fiber gratings,” Optics Letters, vol. 30, no. 7, pp. 720-722, 2005.

    [35] I. Del Villar, I. R. Matias, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Optics Express, vol. 13, no. 1, pp. 56-69, 2005.

    [36] P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, et al., “Optical chemosensor based on long period gratings coated with δ form syndiotactic polystyrene,” IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1713-1715, 2005.

    [37] A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, et al., “Cladding modes re-organization in high refractive index coated long period gratings: effects on the refractive index sensitivity,” Optics Letters, vol. 30, no. 9, pp. 2536-25387, 2005.

    [38] E. Simoes, I. Abe, J. Oliveira, O. Frazao, P. Caldas, and J. L. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensors and Actuators B: Chemical, vol. 153, no. 2, pp. 335-339, 2011.

    [39] A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, et al., “Mode transition in high refractive index coated long period gratings,” Optics Express, vol. 14, no. 1, pp, 19-34, 2006.

    [40] P. Pilla, A. Cusano, A. Cutolo, M. Giordano, G. Mensitieri, P. Rizzo, et al., “Molecular sensing by nanoporous crystalline polymers,” Sensors, vol. 9, no. 12, pp. 9816-9857, 2009.

    [41] N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Optics Letters, vol. 27, no. 9, pp. 686-688, 2002.

    [42] A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, et al., “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Applied Physics Letters, vol. 87, no. 23, pp. 234105-1-234105-3, 2005.

    [43] Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol-gel coating for a gas sensor,” Measurement Science and Technology, vol. 18, no. 11, pp. 3530-3536, 2007.

    [44] D. Viegas, J. Goicoechea , J. L. Santos, F. M. Araújo, L. A. Ferreira, F. J. Arregui, et al., “Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating,” Sensors, vol. 9, no. 1, pp. 519-527, 2009.

    [45] J. M. Corres, I. R. Matias, I Del Villar, and F. J. Arregui, “Design of pH sensors in long-period fiber gratings using polymeric nanocoatings,” IEEE Sensors Journal, vol. 7, no. 3, pp. 455-463, 2007.

    [46] M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Applied Optics, vol. 45, no. 19, pp. 4567-4571, 2006.

         M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Applied Optics, vol. 45, no. 19, pp. 4567-4571, 2006.

    [47] D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, et al., “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Measurement Science and Technology, vol. 20, no. 3, pp. 034002, 2009.

         D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, et al., “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Measurement Science and Technology, vol. 20, no. 3, pp. 034002, 2009.

    [48] A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Applied Physics Letters, vol. 89, no. 20, pp. 201116-1-201116-3, 2006.

         A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Applied Physics Letters, vol. 89, no. 20, pp. 201116-1-201116-3, 2006.

    [49] S. James and R. Tatam, “Fiber optic sensors with nano-structured coatings,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, pp. S430-S444, 2006.

         S. James and R. Tatam, “Fiber optic sensors with nano-structured coatings,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, pp. S430-S444, 2006.

    [50] P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, et al., “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Optics Express, vol. 17, no. 22, pp. 20039-20050, 2009.

         P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, et al., “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Optics Express, vol. 17, no. 22, pp. 20039-20050, 2009.

    [51] P. Pilla, V. Malachovska, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, et al., “Transition mode long period grating biosensor with functional multilayer coatings,” Optics Express, vol. 19, no. 2, pp, 512-526, 2011.

         P. Pilla, V. Malachovska, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, et al., “Transition mode long period grating biosensor with functional multilayer coatings,” Optics Express, vol. 19, no. 2, pp, 512-526, 2011.

    [52] P. Foglia Manzillo, P. Pilla, A. Buosciolo, S. Campopiano, A. Cutolo, A. Borriello, et al., “Self assembling and coordination of water nano-layers on polymer coated long period gratings: toward new perspectives for cation detection,” Soft Materials, vol. 9, no. 2-3, pp. 238-263, 2011.

         P. Foglia Manzillo, P. Pilla, A. Buosciolo, S. Campopiano, A. Cutolo, A. Borriello, et al., “Self assembling and coordination of water nano-layers on polymer coated long period gratings: toward new perspectives for cation detection,” Soft Materials, vol. 9, no. 2-3, pp. 238-263, 2011.

    [53] G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” in Proc. SPIE, vol. 2836, pp. 342-350, 1996.

         G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” in Proc. SPIE, vol. 2836, pp. 342-350, 1996.

    [54] D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, and R. H. Selfridge, “Controlled core removal from a D-shaped optical fiber,” Applied Optics, vol. 42, no. 36, pp. 7121-7125, 2003.

         D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, and R. H. Selfridge, “Controlled core removal from a D-shaped optical fiber,” Applied Optics, vol. 42, no. 36, pp. 7121-7125, 2003.

    [55] T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber bragg gratings,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1926-1928, 2005.

         T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber bragg gratings,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1926-1928, 2005.

    [56] R. H. Selfridge, S. M. Schultz, T. L. Lowder, V. P. Wnuk, A. Mendez, S. Ferguson, et al., “Packaging of surface relief fiber bragg gratings for use as strain sensors at high temperature,” in Proc. SPIE, vol. 6167, pp. 616702-1-616702-7, 2006.

         R. H. Selfridge, S. M. Schultz, T. L. Lowder, V. P. Wnuk, A. Mendez, S. Ferguson, et al., “Packaging of surface relief fiber bragg gratings for use as strain sensors at high temperature,” in Proc. SPIE, vol. 6167, pp. 616702-1-616702-7, 2006.

    [57] T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Optics Letters, vol. 32, no. 17, pp. 2523-2525, 2007.

         T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Optics Letters, vol. 32, no. 17, pp. 2523-2525, 2007.

    [58] H. S. Jang, K. N. Park, J. P. Kim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Optics Express, vol. 17, no. 5, pp. 3855-3860, 2009.

         H. S. Jang, K. N. Park, J. P. Kim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Optics Express, vol. 17, no. 5, pp. 3855-3860, 2009.

    [59] G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, et al., “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sensors and Actuators B: Chemical, vol. 152, no. 2, pp. 196-205, 2011.

         G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, et al., “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sensors and Actuators B: Chemical, vol. 152, no. 2, pp. 196-205, 2011.

    [60] X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” Journal of Lightwave Technology, vol. 20, no. 2, pp. 255-266, 2002.

         X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” Journal of Lightwave Technology, vol. 20, no. 2, pp. 255-266, 2002.

    [61] L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Optics Letters, vol. 33, no. 5, pp. 563-565, 2008.

         L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Optics Letters, vol. 33, no. 5, pp. 563-565, 2008.

    [62] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622-625, 2000.

         J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622-625, 2000.

    [63] M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, et al., “Alcohol detection using carbon nanotubes acoustic and optical sensors,” Applied Physics Letters, vol. 85, no. 12, pp. 2378-2381, 2004.

         M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, et al., “Alcohol detection using carbon nanotubes acoustic and optical sensors,” Applied Physics Letters, vol. 85, no. 12, pp. 2378-2381, 2004.

    [64] M. Penza, G. Cassano, P. Aversa, A. Cusano, A. Cutolo, M. Giordano, et al., “Carbon nanotube acoustic and optical sensors for volatile organic compound detection,” Nanotechnology, vol. 16, no. 11, pp. 2536-2547, 2005.

         M. Penza, G. Cassano, P. Aversa, A. Cusano, A. Cutolo, M. Giordano, et al., “Carbon nanotube acoustic and optical sensors for volatile organic compound detection,” Nanotechnology, vol. 16, no. 11, pp. 2536-2547, 2005.

    [65] M. Consales, A. Cutolo, M. Penza, P. Aversa, G. Cassano, M. Giordano, et al., “Carbon nanotubes coated acoustic and optical VOCs sensors: towards the tailoring of the sensing performances,” IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 601-612, 2007.

         M. Consales, A. Cutolo, M. Penza, P. Aversa, G. Cassano, M. Giordano, et al., “Carbon nanotubes coated acoustic and optical VOCs sensors: towards the tailoring of the sensing performances,” IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 601-612, 2007.

    [66] M. Consales, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, G. Cassano, et al., “Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: performances analysis,” Sensors and Actuators B: Chemical, vol. 118, no. 1-2, pp. 232-242, 2006.

         M. Consales, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, G. Cassano, et al., “Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: performances analysis,” Sensors and Actuators B: Chemical, vol. 118, no. 1-2, pp. 232-242, 2006.

    [67] M. Consales, A. Crescitelli, M. Penza, P. Aversa, P. Delli Veneri, M. Giordano, et al., “SWCNT nano-composite optical sensors for VOC and gas trace detection,” Sensors and Actuators B: Chemical, vol. 138, no. 1, pp. 351-361, 2009.

         M. Consales, A. Crescitelli, M. Penza, P. Aversa, P. Delli Veneri, M. Giordano, et al., “SWCNT nano-composite optical sensors for VOC and gas trace detection,” Sensors and Actuators B: Chemical, vol. 138, no. 1, pp. 351-361, 2009.

    [68] M. Consales, A. Crescitelli, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, et al., “Chemical detection in water by single-walled carbon nanotubes-based optical fiber sensors,” IEEE Sensors Journal, vol. 7, no. 7, pp. 1004-1005, 2007.

         M. Consales, A. Crescitelli, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, et al., “Chemical detection in water by single-walled carbon nanotubes-based optical fiber sensors,” IEEE Sensors Journal, vol. 7, no. 7, pp. 1004-1005, 2007.

    [69] A. Cusano, M. Consales, A. Cutolo, M. Penza, P. Aversa, M. Giordano, et al., “Optical probes based on optical fibers and single-walled carbon nanotubes for hydrogen detection at cryogenic temperatures,” Applied Physics Letters, vol. 89, no. 20, pp. 201106-1-201106-3, 2007.

         A. Cusano, M. Consales, A. Cutolo, M. Penza, P. Aversa, M. Giordano, et al., “Optical probes based on optical fibers and single-walled carbon nanotubes for hydrogen detection at cryogenic temperatures,” Applied Physics Letters, vol. 89, no. 20, pp. 201106-1-201106-3, 2007.

    [70] S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 1, pp. 137-146, 2004.

         S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 1, pp. 137-146, 2004.

    [71] S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, et al., “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their applications to mode-locked fiber lasers,” Optics Letters, vol. 29, no. 14, pp. 1581-1583, 2004.

         S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, et al., “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their applications to mode-locked fiber lasers,” Optics Letters, vol. 29, no. 14, pp. 1581-1583, 2004.

    [72] K. Kashiwagi and S. Yamashita, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Japanese Journal of Applied Physics, vol. 46, no. 40, pp. L988-L990, 2007.

         K. Kashiwagi and S. Yamashita, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Japanese Journal of Applied Physics, vol. 46, no. 40, pp. L988-L990, 2007.

    [73] K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Optics Express, vol. 17, no. 18, pp. 15608-15613, 2009.

         K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Optics Express, vol. 17, no. 18, pp. 15608-15613, 2009.

    [74] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B: Chemical, vol. 23, no. 2-3, no. 103-109, 1995.

         G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B: Chemical, vol. 23, no. 2-3, no. 103-109, 1995.

    [75] M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Progress in Surface Science, vol. 79, no. 24, pp. 47-154, 2005.

         M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Progress in Surface Science, vol. 79, no. 24, pp. 47-154, 2005.

    [76] M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, et al., “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 5000-5007, 2006.

         M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, et al., “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 5000-5007, 2006.

    [77] A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, et al., “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Applied Physics Letters, vol. 89, no. 11, pp. 111103-1-111103-3, 2006.

         A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, et al., “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Applied Physics Letters, vol. 89, no. 11, pp. 111103-1-111103-3, 2006.

    [78] A. Buosciolo, M. Consales, M. Pisco, A. Cusano, and M. Giordano, “Fiber optic near-field chemical sensors based on wavelength scale tin dioxide particle layers,” Journal of Lightwave Technology, vol. 26, no. 20, pp. 3468-3475, 2008.

         A. Buosciolo, M. Consales, M. Pisco, A. Cusano, and M. Giordano, “Fiber optic near-field chemical sensors based on wavelength scale tin dioxide particle layers,” Journal of Lightwave Technology, vol. 26, no. 20, pp. 3468-3475, 2008.

    [79] A. Cusano, P. Pilla, M. Consales, M. Pisco, A. Cutolo, A. Buosciolo, et al., “Near field behavior of SnO2 particle-layer deposited on standard optical fiber by electrostatic spray pyrolysis method,” Optics Express, no. 15, no. 8, pp. 5136-5146, 2007.

         A. Cusano, P. Pilla, M. Consales, M. Pisco, A. Cutolo, A. Buosciolo, et al., “Near field behavior of SnO2 particle-layer deposited on standard optical fiber by electrostatic spray pyrolysis method,” Optics Express, no. 15, no. 8, pp. 5136-5146, 2007.

    [80] M. Fossa and P. Petagna, “Use and calibration of capacitive RH sensors for the hygrometric control of the CMS tracker,” CMS NOTE2003/24, Cern, Geneve, Switzerland, 2003.

         M. Fossa and P. Petagna, “Use and calibration of capacitive RH sensors for the hygrometric control of the CMS tracker,” CMS NOTE2003/24, Cern, Geneve, Switzerland, 2003.

    [81] M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, et al., “Fiber optic humidity sensors for high-energy physics application at CERN,” Sensors and Actuators B: Chemical, vol. 159, no. 1, pp 66-74, 2011.

         M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, et al., “Fiber optic humidity sensors for high-energy physics application at CERN,” Sensors and Actuators B: Chemical, vol. 159, no. 1, pp 66-74, 2011.

    [82] M. C. Phan Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, et al., “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Measurement Science and Technology, vol. 17, no. 5, pp. 992-997, 2006.

         M. C. Phan Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, et al., “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Measurement Science and Technology, vol. 17, no. 5, pp. 992-997, 2006.

    [83] M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, et al., “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Optics Letters, vol. 32, no. 16, pp. 2390-2392, 2007.

         M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, et al., “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Optics Letters, vol. 32, no. 16, pp. 2390-2392, 2007.

    [84] L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Analytical and Bioanalytical Chemistry, vol. 385, no. 8, pp. 1370-1375, 2006.

         L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Analytical and Bioanalytical Chemistry, vol. 385, no. 8, pp. 1370-1375, 2006.

    [85] C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056-13066, 2006.

         C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056-13066, 2006.

    [86] Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Applied Physics Letters, vol. 85, no. 22, pp. 5182-5184, 2004.

         Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Applied Physics Letters, vol. 85, no. 22, pp. 5182-5184, 2004.

    [87] S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Optics Express, vol. 15, no. 20, pp. 12783-12791, 2007.

         S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Optics Express, vol. 15, no. 20, pp. 12783-12791, 2007.

    [88] J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Optics Express, vol. 13, no. 15, pp. 5883-5889, 2005.

         J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Optics Express, vol. 13, no. 15, pp. 5883-5889, 2005.

    [89] S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Applied Physics Letters, vol. 90, no. 11, pp. 111101, 2007.

         S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Applied Physics Letters, vol. 90, no. 11, pp. 111101, 2007.

    [90] S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Optics Express, vol. 13, no. 9, pp. 3454-3459, 2005.

         S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Optics Express, vol. 13, no. 9, pp. 3454-3459, 2005.

    [91] S. Afshar v., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Optics Express, vol. 15, no. 26, pp. 17891-17901, 2007.

         S. Afshar v., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Optics Express, vol. 15, no. 26, pp. 17891-17901, 2007.

    [92] T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, et al., “Gas sensing using air-guiding photonic bandgap fibers,” Optics Express, vol. 12, no. 17, pp. 4080-4087, 2004.

         T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, et al., “Gas sensing using air-guiding photonic bandgap fibers,” Optics Express, vol. 12, no. 17, pp. 4080-4087, 2004.

    [93] Y. Ruan, T. C. Foo, St. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, et al., “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Optics Express, vol. 16, no. 22, pp. 18514-18523, 2008.

         Y. Ruan, T. C. Foo, St. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, et al., “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Optics Express, vol. 16, no. 22, pp. 18514-18523, 2008.

    [94] J. Canning, “Structured optical fibres and the application of their linear and non-linear properties,” in Selected topics in photonic crystals and metamaterials, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, Eds. Singapore: World Scientific Publishing Co. Pte. Ltd., 2011, pp. 389-452.

         J. Canning, “Structured optical fibres and the application of their linear and non-linear properties,” in Selected topics in photonic crystals and metamaterials, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, Eds. Singapore: World Scientific Publishing Co. Pte. Ltd., 2011, pp. 389-452.

    [95] T. Larson, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electronics Letters, vol. 39, no. 24, pp. 1719-1720, 2003.

         T. Larson, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electronics Letters, vol. 39, no. 24, pp. 1719-1720, 2003.

    [96] T. Larson, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Optics Express, vol. 11, no. 20, pp. 2589-2596, 2003.

         T. Larson, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Optics Express, vol. 11, no. 20, pp. 2589-2596, 2003.

    [97] M. Haakestad, M. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. Engan, et al., “Electrically tuneable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fibre,” IEEE Photonics Technology Letters, vol. 17, no. 4, pp. 819-821, 2005.

         M. Haakestad, M. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. Engan, et al., “Electrically tuneable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fibre,” IEEE Photonics Technology Letters, vol. 17, no. 4, pp. 819-821, 2005.

    [98] J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983-5990, 2008.

         J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983-5990, 2008.

    [99] C. Grillet, P. Domachuk, V. Taeed, E. Magi, J. Bolger, B. Eggleton, et al., “Compact tunable microfluidic interferometer,” Optics Express, vol. 12, no. 24, pp. 5440-5447, 2004.

         C. Grillet, P. Domachuk, V. Taeed, E. Magi, J. Bolger, B. Eggleton, et al., “Compact tunable microfluidic interferometer,” Optics Express, vol. 12, no. 24, pp. 5440-5447, 2004.

    [100] A. Cusano, M. Pisco, M. Consales, A. Cutolo, M. Giordano, M. Penza, et al., “Novel opto-chemical sensors based on hollow fibers and single walled carbon nanotubes,” IEEE Photonics Technology Letters, vol. 18, no. 22, pp. 2431-2433, 2006.

         A. Cusano, M. Pisco, M. Consales, A. Cutolo, M. Giordano, M. Penza, et al., “Novel opto-chemical sensors based on hollow fibers and single walled carbon nanotubes,” IEEE Photonics Technology Letters, vol. 18, no. 22, pp. 2431-2433, 2006.

    [101] M. Pisco, M. Consales, A. Cutolo, M. Penza, P. Aversa, and A. Cusano, “Hollow fibers integrated with single walled carbon nanotubes: bandgap modification and chemical sensing capability,” Sensors and Actuators B: Chemical, vol. 129, no. 1, pp. 163-170, 2008.

         M. Pisco, M. Consales, A. Cutolo, M. Penza, P. Aversa, and A. Cusano, “Hollow fibers integrated with single walled carbon nanotubes: bandgap modification and chemical sensing capability,” Sensors and Actuators B: Chemical, vol. 129, no. 1, pp. 163-170, 2008.

    [102] C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Optics Communications, vol. 204, no. 1-6, pp. 179-184, 2002.

         C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Optics Communications, vol. 204, no. 1-6, pp. 179-184, 2002.

    [103] C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Optics Letters, vol. 32, no. 11, pp. 1575-1577, 2007.

         C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Optics Letters, vol. 32, no. 11, pp. 1575-1577, 2007.

    [104] S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, et al., “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Optics Express, vol. 13, no. 12, pp. 4786-4791, 2005.

         S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, et al., “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Optics Express, vol. 13, no. 12, pp. 4786-4791, 2005.

    [105] K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P., Hansen, “Selective filling of photonic crystal fibres,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 8, pp. L13-L20, 2005.

         K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P., Hansen, “Selective filling of photonic crystal fibres,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 8, pp. L13-L20, 2005.

    [106] L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Optics Express, vol. 13, no. 22, pp. 9014-9022, 2005.

         L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Optics Express, vol. 13, no. 22, pp. 9014-9022, 2005.

    [107] C. J. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. B. Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Optics Express, vol. 15, no. 18, pp. 11207-11212, 2007.

         C. J. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. B. Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Optics Express, vol. 15, no. 18, pp. 11207-11212, 2007.

    [108] J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Optics Express, vol. 16, no. 20, pp. 15700-15708, 2008.

         J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Optics Express, vol. 16, no. 20, pp. 15700-15708, 2008.

    [109] Y. Han and H. Du, “Photonic crystal fiber for chemical sensing using surface-enhanced Raman scattering,” in Photonic Bandgap Structures: Novel Technological Platforms for Physical, Chemical and Biological Sensing. M. Pisco, A. Cusano and, A. Cutolo, Ed. Oak Park, IL: Bentham Science Publisher, 2012, pp. 157-179.

         Y. Han and H. Du, “Photonic crystal fiber for chemical sensing using surface-enhanced Raman scattering,” in Photonic Bandgap Structures: Novel Technological Platforms for Physical, Chemical and Biological Sensing. M. Pisco, A. Cusano and, A. Cutolo, Ed. Oak Park, IL: Bentham Science Publisher, 2012, pp. 157-179.

    [110] X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surfaceenhanced Raman scattering probes,” International Journal of Optics, vol. 2011 (article ID 754610), pp 754610-1-754610-11, 2011.

         X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surfaceenhanced Raman scattering probes,” International Journal of Optics, vol. 2011 (article ID 754610), pp 754610-1-754610-11, 2011.

    [111] H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Optics Express, vol. 16, no. 11, pp. 8300-8305, 2008.

         H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Optics Express, vol. 16, no. 11, pp. 8300-8305, 2008.

    [112] A. Amezcua-Correa, J. Yang, and C. E. Finlayson, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Advanced Functional Materials, vol. 17, no. 13, pp. 2024-2030, 2007.

         A. Amezcua-Correa, J. Yang, and C. E. Finlayson, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Advanced Functional Materials, vol. 17, no. 13, pp. 2024-2030, 2007.

    [113] M. K. Khaing Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Optics Letters, vol. 34, no. 7, pp. 968-970, 2009.

         M. K. Khaing Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Optics Letters, vol. 34, no. 7, pp. 968-970, 2009.

    [114] M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Optics Letters, vol. 35, no. 4, pp. 466-468, 2010.

         M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Optics Letters, vol. 35, no. 4, pp. 466-468, 2010.

    [115] Y. Han, S. Tan, M. K. Khaing Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Advanced Materials, vol. 22, no. 24, pp. 2647-2651, 2010.

         Y. Han, S. Tan, M. K. Khaing Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Advanced Materials, vol. 22, no. 24, pp. 2647-2651, 2010.

    [116] G. Whitesides, J. Kriebel, and B. Mayers, “Self-assembly and nanostructured materials,” in Nanoscale Assembly: Chemical techniques. B. T. Mayers, Ed. New York: Springer US, 2009, pp. 217-239.

         G. Whitesides, J. Kriebel, and B. Mayers, “Self-assembly and nanostructured materials,” in Nanoscale Assembly: Chemical techniques. B. T. Mayers, Ed. New York: Springer US, 2009, pp. 217-239.

    [117] F. J. Arregui, I. R. Matias, J. M. Corres, I. Del Villar, J. Goicoechea, C. R. Zamarreno, et al. “Optical fiber sensors based on layer-by-layer nanostructured films,” Procedia Engineering, vol. 5, pp. 1087-1090, 2010.

         F. J. Arregui, I. R. Matias, J. M. Corres, I. Del Villar, J. Goicoechea, C. R. Zamarreno, et al. “Optical fiber sensors based on layer-by-layer nanostructured films,” Procedia Engineering, vol. 5, pp. 1087-1090, 2010.

    [118] I. Del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic chemical nanosensors by electrostatic molecular self-assembly,” Current Analytical Chemistry, vol. 4, no. 4, pp. 341-355, 2008.

         I. Del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic chemical nanosensors by electrostatic molecular self-assembly,” Current Analytical Chemistry, vol. 4, no. 4, pp. 341-355, 2008.

    [119] J. Homola, S. S. Yeea, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 3-15, 1999.

         J. Homola, S. S. Yeea, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 3-15, 1999.

    [120] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, vol. 108, no. 2, pp. 462-493, 2008.

         J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, vol. 108, no. 2, pp. 462-493, 2008.

    [121] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, et al., “Nanostructured plasmonic sensors,” Chemical Reviews, vol. 108, no. 2, pp. 494-521, 2008.

         M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, et al., “Nanostructured plasmonic sensors,” Chemical Reviews, vol. 108, no. 2, pp. 494-521, 2008.

    [122] S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors, vol. 11, no. 2, pp. 1565-1588, 2011.

         S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors, vol. 11, no. 2, pp. 1565-1588, 2011.

    [123] A. K. Sharma and B. D. Gupta, “Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films,” Nanotechnology, vol. 17, no. 1, pp. 124-131, 2006.

         A. K. Sharma and B. D. Gupta, “Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films,” Nanotechnology, vol. 17, no. 1, pp. 124-131, 2006.

    [124] M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: Modeling and experiments,” Plasmonics, vol. 3, no. 2-3, pp. 49-57, 2008.

         M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: Modeling and experiments,” Plasmonics, vol. 3, no. 2-3, pp. 49-57, 2008.

    [125] E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors and Bioelectronics, vol. 11, no. 6, pp. 635-649, 1996.

         E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors and Bioelectronics, vol. 11, no. 6, pp. 635-649, 1996.

    [126] J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 16-24, 1999.

         J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 16-24, 1999.

    [127] N. Díaz-Herrera, A. González-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195-198, 2010.

         N. Díaz-Herrera, A. González-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195-198, 2010.

    [128] S. F. Wang, M. H. Chiu, J. C. Hsu, R. S. Chang, and F. T. Wang, “Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film,” Optics Communications, vol. 253, no. 4-6, pp. 283-289, 2005.

         S. F. Wang, M. H. Chiu, J. C. Hsu, R. S. Chang, and F. T. Wang, “Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film,” Optics Communications, vol. 253, no. 4-6, pp. 283-289, 2005.

    [129] M. H. Chiu and C. H. Shih, “Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement,” Sensors and Actuators B: Chemical, vol. 131, no. 2, pp. 1120-1124, 2008.

         M. H. Chiu and C. H. Shih, “Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement,” Sensors and Actuators B: Chemical, vol. 131, no. 2, pp. 1120-1124, 2008.

    [130] M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Optics Express, vol. 19, no. 15, pp. 13980-13988, 2011.

         M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Optics Express, vol. 19, no. 15, pp. 13980-13988, 2011.

    [131] R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface Plasmon resonance sensor,” Sensors and Actuators B: Chemical, vol. 51, no. 1-3, pp. 311-315, 1998.

         R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface Plasmon resonance sensor,” Sensors and Actuators B: Chemical, vol. 51, no. 1-3, pp. 311-315, 1998.

    [132] W. J. H. Bender, R. E. Dessy, M. S. Miller, and R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Analytical Chemistry, vol. 66, no. 7, pp. 963-970, 1994.

         W. J. H. Bender, R. E. Dessy, M. S. Miller, and R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Analytical Chemistry, vol. 66, no. 7, pp. 963-970, 1994.

    [133] M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B: Chemical, vol. 90, no. 1-3, pp. 236-242, 2003.

         M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B: Chemical, vol. 90, no. 1-3, pp. 236-242, 2003.

    [134] M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 1120-1124, 2007.

         M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 1120-1124, 2007.

    [135] R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 106-111, 2001.

         R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 106-111, 2001.

    [136] Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” Journal of the Optical Society of America B, vol. 23, no. 5, pp. 801-811, 2006.

         Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” Journal of the Optical Society of America B, vol. 23, no. 5, pp. 801-811, 2006.

    [137] J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sensors and Actuators B: Chemical, vol. 119, no. 1, pp. 105-109, 2006.

         J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sensors and Actuators B: Chemical, vol. 119, no. 1, pp. 105-109, 2006.

    [138] G. Nemova and R. Kashyap, “Fiber Bragg grating assisted surface plasmon polariton sensor,” Optics Letters, vol. 31, no. 14, pp. 2118-2120, 2006.

         G. Nemova and R. Kashyap, “Fiber Bragg grating assisted surface plasmon polariton sensor,” Optics Letters, vol. 31, no. 14, pp. 2118-2120, 2006.

    [139] G. Nemova and R. Kashyap, “Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber Bragg grating,” Journal of Lightwave Technology, vol. 24, no. 10, pp. 3789-3796, 2006.

         G. Nemova and R. Kashyap, “Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber Bragg grating,” Journal of Lightwave Technology, vol. 24, no. 10, pp. 3789-3796, 2006.

    [140] T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” Journal of the Optical Society of America B, vol. 25, no. 4, pp. 481-490, 2008.

         T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” Journal of the Optical Society of America B, vol. 25, no. 4, pp. 481-490, 2008.

    [141] W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Optics Letters, vol. 31, no. 17, pp. 2556-2558, 2006.

         W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Optics Letters, vol. 31, no. 17, pp. 2556-2558, 2006.

    [142] B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Optics Express, vol. 15, no. 18, pp. 11413-11426, 2007.

         B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Optics Express, vol. 15, no. 18, pp. 11413-11426, 2007.

    [143] M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Optics Express, vol. 16, no. 12, pp. 8427-8432, 2008.

         M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Optics Express, vol. 16, no. 12, pp. 8427-8432, 2008.

    [144] A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Optics Express, vol. 14, no. 24, pp. 11616-11621, 2006.

         A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Optics Express, vol. 14, no. 24, pp. 11616-11621, 2006.

    [145] A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics, vol. 28, no. 3, pp. 198-213, 2008.

         A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics, vol. 28, no. 3, pp. 198-213, 2008.

    [146] S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Physical Review B, vol. 60, no. 8, pp. 5751-5758, 1999.

         S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Physical Review B, vol. 60, no. 8, pp. 5751-5758, 1999.

    [147] S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Physical Review B, vol. 65, no. 23, pp. 235112-1-235112-8, 2002.

         S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Physical Review B, vol. 65, no. 23, pp. 235112-1-235112-8, 2002.

    [148] A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, et al., “Guided resonances in photonic quasicrystals,” Optics Express, vol. 17, no. 8, pp. 6335-6346, 2009.

         A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, et al., “Guided resonances in photonic quasicrystals,” Optics Express, vol. 17, no. 8, pp. 6335-6346, 2009.

    [149] M. Pisco, A. Ricciardi, I. Gallina, G. Castaldi, S. Campopiano, A. Cutolo, et al., “Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study,” Optics Express, vol. 18, no. 16, pp. 17280-17293, 2010.

         M. Pisco, A. Ricciardi, I. Gallina, G. Castaldi, S. Campopiano, A. Cutolo, et al., “Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study,” Optics Express, vol. 18, no. 16, pp. 17280-17293, 2010.

    [150] A. Ricciardi, M. Pisco, I. Gallina, S. Campopiano, V. Galdi, L. O’Faolain, et al., “Experimental evidence of guided-resonances in photonic crystals with aperiodically ordered supercells,” Optics Letters, vol. 35, no. 23, pp. 3946-3948, 2010.

         A. Ricciardi, M. Pisco, I. Gallina, S. Campopiano, V. Galdi, L. O’Faolain, et al., “Experimental evidence of guided-resonances in photonic crystals with aperiodically ordered supercells,” Optics Letters, vol. 35, no. 23, pp. 3946-3948, 2010.

    [151] A. Ricciardi, M. Pisco, A. Cutolo, A. Cusano, L. O’Faolain, T. F. Krauss, et al., “Evidence of guided resonances in photonic quasicrystal slabs,” Physical Review B, vol. 84, no. 8, pp. 085135-1-085135-4, 2011.

         A. Ricciardi, M. Pisco, A. Cutolo, A. Cusano, L. O’Faolain, T. F. Krauss, et al., “Evidence of guided resonances in photonic quasicrystal slabs,” Physical Review B, vol. 84, no. 8, pp. 085135-1-085135-4, 2011.

    [152] X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Advanced Functional Materials, vol. 20, no. 12, pp. 1910-1916, 2010.

         X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Advanced Functional Materials, vol. 20, no. 12, pp. 1910-1916, 2010.

    [153] S. D. Hart, G. R. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science, vol. 296, no. 5567, pp. 510-513, 2002.

         S. D. Hart, G. R. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science, vol. 296, no. 5567, pp. 510-513, 2002.

    [154] M. Bayindir, A. F. Abouraddy, F. Sorin, J. D. Joannopoulos, and Y. Fink, “Fiber photodetectors codrawn from conducting, semiconducting and insulating materials,” Optics and Photonics News, vol. 15, no. 12, pp. 14-24, 2004.

         M. Bayindir, A. F. Abouraddy, F. Sorin, J. D. Joannopoulos, and Y. Fink, “Fiber photodetectors codrawn from conducting, semiconducting and insulating materials,” Optics and Photonics News, vol. 15, no. 12, pp. 14-24, 2004.

    [155] M. Bayindir, F. Sorin, S. Hart, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Metal-insulatorsemiconductor optoelectronic fibre” Nature, vol. 431, no. 7010, pp. 826-829, 2004.

         M. Bayindir, F. Sorin, S. Hart, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Metal-insulatorsemiconductor optoelectronic fibre” Nature, vol. 431, no. 7010, pp. 826-829, 2004.

    [156] K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, et al., “Hollow multilayer photonic bandgap fibers for NIR applications,” Optics Express, vol. 12, no. 8, pp. 1510-1517, 2004.

         K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, et al., “Hollow multilayer photonic bandgap fibers for NIR applications,” Optics Express, vol. 12, no. 8, pp. 1510-1517, 2004.

    [157] M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, et al., “Integrated Fibers for self monitored optical transport,” Nature Materials, vol. 4, no. 11, pp. 820-824, 2005.

         M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, et al., “Integrated Fibers for self monitored optical transport,” Nature Materials, vol. 4, no. 11, pp. 820-824, 2005.

    [158] M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Advanced Materials, vol. 18, no. 7, pp. 845-849, 2006.

         M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Advanced Materials, vol. 18, no. 7, pp. 845-849, 2006.

    [159] M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, et al., “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1202-1023, 2006.

         M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, et al., “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1202-1023, 2006.

    [160] S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, et al., “Multimaterial piezoelectric fibres,” Nature Materials, vol. 9, no. 8, pp. 643-648, 2010.

         S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, et al., “Multimaterial piezoelectric fibres,” Nature Materials, vol. 9, no. 8, pp. 643-648, 2010.

    [161] F. Sorin and Y. Fink, “Multimaterial fiber sensors,” in Proc. SPIE, vol. 7653, pp. 765305-1-765305-9, 2010.

         F. Sorin and Y. Fink, “Multimaterial fiber sensors,” in Proc. SPIE, vol. 7653, pp. 765305-1-765305-9, 2010.

    [162] E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Letters, vol. 9, no. 3, pp. 1132-1138, 2009.

         E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Letters, vol. 9, no. 3, pp. 1132-1138, 2009.

    [163] I. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature,” Journal of Lightwave Technology, vol. 29, no. 9, pp. 1367-1374, 2011.

         I. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature,” Journal of Lightwave Technology, vol. 29, no. 9, pp. 1367-1374, 2011.

    [164] S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, and R. Baets “Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1415-1420, 2009.

         S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, and R. Baets “Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1415-1420, 2009.

    [165] D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, et al., “Fibre-top cantilevers: design, fabrication and applications,” Measurement Science and Technology, vol. 18, no. 10, pp. 3247-3252, 2007.

         D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, et al., “Fibre-top cantilevers: design, fabrication and applications,” Measurement Science and Technology, vol. 18, no. 10, pp. 3247-3252, 2007.

    [166] A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, pp. 35005-35008, 2008.

         A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, pp. 35005-35008, 2008.

    [167] G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Measurement Science and Technology, vol. 21, no. 9, pp. 94033-94038, 2010.

         G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Measurement Science and Technology, vol. 21, no. 9, pp. 94033-94038, 2010.

    [168] D. Iannuzzi, S. Deladi, M. Slaman, J. H. Rector, H. Schreuders, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sensors and Actuators B: Chemical, vol. 121, no. 2, pp. 706-708, 2006.

         D. Iannuzzi, S. Deladi, M. Slaman, J. H. Rector, H. Schreuders, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sensors and Actuators B: Chemical, vol. 121, no. 2, pp. 706-708, 2006.

    [169] C. J. Alberts, S. De Man, J. W. Berenschot, V. J. Gadgil, M. C. Elwenspoek, and D. Iannuzzi, “Fiber-top refractometer,” Measurement Science and Technology, vol. 20, no. 3, pp. 034005-1-034005-5, 2009.

         C. J. Alberts, S. De Man, J. W. Berenschot, V. J. Gadgil, M. C. Elwenspoek, and D. Iannuzzi, “Fiber-top refractometer,” Measurement Science and Technology, vol. 20, no. 3, pp. 034005-1-034005-5, 2009.

    [170] D. Iannuzzi, S. Deladi, J. W. Berenschot, S. De Man, K. Heeck, and M. C. Elwenspoek, “Fiber-top atomic force microscope,” Review of Scientific Instruments, vol. 77, no. 10, pp. 106105-1-106105-3, 2006.

         D. Iannuzzi, S. Deladi, J. W. Berenschot, S. De Man, K. Heeck, and M. C. Elwenspoek, “Fiber-top atomic force microscope,” Review of Scientific Instruments, vol. 77, no. 10, pp. 106105-1-106105-3, 2006.

    [171] A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications,” IEEE Sensors Journal, vol. 8, no. 6, pp. 942-950, 2008.

         A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications,” IEEE Sensors Journal, vol. 8, no. 6, pp. 942-950, 2008.

    [172] Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomedical Optics Express, vol. 2, no. 3, pp. 478-484, 2011.

         Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomedical Optics Express, vol. 2, no. 3, pp. 478-484, 2011.

    [173] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE Journal Quantum Electronics, vol. 33, no. 11, pp. 2058-2059, 1997.

         D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE Journal Quantum Electronics, vol. 33, no. 11, pp. 2058-2059, 1997.

    Marco CONSALES, Marco PISCO, and Andrea CUSANO. Lab-on-Fiber Technology: a New Avenue for Optical Nanosensors[J]. Photonic Sensors, 2012, 2(4): 289
    Download Citation