• Acta Physica Sinica
  • Vol. 69, Issue 5, 057901-1 (2020)
Xiao-Juan Liang1、3, Yu Cao2, Hong-Kun Cai1、3、*, Jian Su1、3, Jian Ni1、3, Juan Li1、3, and Jian-Jun Zhang1、3
Author Affiliations
  • 1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2College of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
  • 3Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China
  • show less
    DOI: 10.7498/aps.69.20191891 Cite this Article
    Xiao-Juan Liang, Yu Cao, Hong-Kun Cai, Jian Su, Jian Ni, Juan Li, Jian-Jun Zhang. Simulation and architectural design for Schottky structure perovskite solar cells[J]. Acta Physica Sinica, 2020, 69(5): 057901-1 Copy Citation Text show less
    Schematic and energy-level diagram of each functional layers of solar cells: (a), (b) planar heterojunction solar cell structure; (c), (d) schottky solar cell structure.
    Fig. 1. Schematic and energy-level diagram of each functional layers of solar cells: (a), (b) planar heterojunction solar cell structure; (c), (d) schottky solar cell structure.
    J-V characteristics of pin solar cell structure and Schottky solar cell structure.
    Fig. 2. J-V characteristics of pin solar cell structure and Schottky solar cell structure.
    Energy band diagram and schematic diagram of photogenerated electron and hole transport: (a) Pin solar cell structure; (b) Schottky solar cell structure.
    Fig. 3. Energy band diagram and schematic diagram of photogenerated electron and hole transport: (a) Pin solar cell structure; (b) Schottky solar cell structure.
    Schottky solar cells with different front electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.
    Fig. 4. Schottky solar cells with different front electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.
    Schottky solar cells with different back electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.
    Fig. 5. Schottky solar cells with different back electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.
    Output trends under different acceptor doping concentration: (a) Voc and Jsc; (b) FF and PCE.
    Fig. 6. Output trends under different acceptor doping concentration: (a) Voc and Jsc; (b) FF and PCE.
    Output trends under different donor doping concentration: (a) Voc and Jsc; (b) FF and PCE.
    Fig. 7. Output trends under different donor doping concentration: (a) Voc and Jsc; (b) FF and PCE.
    Output trends under J-V characteristics of Schottky solar cells with and without defect states: (a)J-V characteristic; (b) quantum efficiency; (c) free electrons concentration distribution; (d) free holes concentration distribution.
    Fig. 8. Output trends under J-V characteristics of Schottky solar cells with and without defect states: (a)J-V characteristic; (b) quantum efficiency; (c) free electrons concentration distribution; (d) free holes concentration distribution.
    Output trends under different thickness of absorbing layer: (a) Voc and Jsc; (b) FF and PCE.
    Fig. 9. Output trends under different thickness of absorbing layer: (a) Voc and Jsc; (b) FF and PCE.
    参数SnO2[20,21]Perovskite[20,22]Spiro-OMeTAD[23-25]
    介电常数9203
    电子亲和势/eV3.51.553
    禁带宽度/eV4.33.752.2
    厚度/nm50500250
    电子/空穴迁移率/cm2·V–1·s–120/1050/500.0002/0.0002
    受主掺杂浓度/cm–3002×1018
    施主掺杂浓度/cm–31×101600
    导带有效状态密度/cm–32.2×10182.2×10182.2×1018
    价带有效状态密度/cm–31.8×10191.8×10191.8×1019
    Table 1.

    Material parameters of the Schottky solar cells.

    模型中使用的材料参数

    结构Jsc/mA·cm–2Voc/V 填充因子FF/%转换效率/%
    平面异质结 结构 24.381.0974.9920.01
    肖特基结构20.350.3675.935.64
    Table 2.

    Photovoltaic performance parameters of the pin solar cell structure and Schottky solar cell structure.

    平面异质结结构和肖特基钙钛矿太阳电池光伏性能参数

    材料功函数/eV
    In2O3:F(FTO) 4.6[28]
    In2O3:Sn(ITO) 4.4[28]
    ITO/PEIE4.0[27]
    FTO/PEIE3.8[28]
    Table 3.

    Work function of different front electrode materials[27,28].

    不同透明导电电极材料的功函数[27,28]

    功函数/eVJsc/mA·cm–2Voc/V FF/%转换效率/%
    3.824.430.8784.0017.93
    4.024.380.7883.2215.86
    4.424.210.3873.446.80
    4.624.050.1857.002.50
    Table 4.

    Photovoltaic performance parameters of Schottky solar cells with different front electrode work function.

    透明导电电极功函数的不同肖特基钙钛矿太阳电池光伏性能参数

    功函数/eVJsc/mA·cm2Voc/V FF/%转换效率/%
    4.323.480.1451.641.73
    4.924.500.7479.6214.38
    5.024.600.8280.9816.35
    5.124.680.9080.5117.39
    5.324.790.9578.1718.58
    5.524.760.9678.1918.75
    Table 5.

    Photovoltaic performances of Schottky solar cells with different back electrode work function.

    对电极功函数不同肖特基钙钛矿太阳电池光伏性能

    Jsc/mA·cm2Voc/V FF/%转换效率/%
    有缺陷20.760.9481.9716.06
    无缺陷24.380.948281.5419.22
    Table 6.

    Photovoltaic performance of Schottky solar cells with and without defect states.

    有无缺陷的肖特基钙钛矿太阳电池的光电特性

    Xiao-Juan Liang, Yu Cao, Hong-Kun Cai, Jian Su, Jian Ni, Juan Li, Jian-Jun Zhang. Simulation and architectural design for Schottky structure perovskite solar cells[J]. Acta Physica Sinica, 2020, 69(5): 057901-1
    Download Citation