• Chinese Journal of Lasers
  • Vol. 49, Issue 6, 0608001 (2022)
Jiafu Lü1, Boqin Ma1、*, and Xueying Wang2
Author Affiliations
  • 1School of Data Science and Intelligent Media, Communication University of China, Beijing 100024, China
  • 2School of Information and Communication Engineering, Communication University of China, Beijing 100024, China
  • show less
    DOI: 10.3788/CJL202249.0608001 Cite this Article Set citation alerts
    Jiafu Lü, Boqin Ma, Xueying Wang. Quasi-Phase-Matching Based on Hilbert Fractal Superlattice Structure[J]. Chinese Journal of Lasers, 2022, 49(6): 0608001 Copy Citation Text show less
    References

    [1] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918(1962).

    [2] Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 62, 435-436(1993).

    [3] Feng J, Zhu Y Y, Ming N B. Harmonic generations in an optical Fibonacci superlattice[J]. Physical Review B, 41, 5578-5582(1990).

    [4] Chen B Q, Ren M L, Liu R J et al. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals[J]. Light: Science & Applications, 3, e189(2014).

    [5] Chen B Q, Zhang C, Hu C Y et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Physical Review Letters, 115, 083902(2015).

    [6] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).

    [7] Wu T, Wong Y P, Wu Z H et al. Application of free side edges to thickness shear bulk acoustic resonator on lithium niobate for suppression of transverse resonances[J]. Japanese Journal of Applied Physics, 60, SDDC06(2021).

    [8] Wu Z H, Wong Y P, Wu T et al. Broadband piston mode operation of solidly mounted resonator employing A1 lamb mode on lithium niobate[J]. Japanese Journal of Applied Physics, 60, SDDC03(2021).

    [9] Yuan S, Hu C R, Pan A et al. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 42, 041304(2021).

    [10] Choudhary K, Singh A, Singh A et al. Implementation of highly optimized optical all logic gates on a single chip using Ti-diffused lithium-niobate for high-speed processing in combinational circuits[J]. Microelectronics Journal, 111, 105048(2021).

    [11] Kadota M, Ishii Y, Tanaka S. Surface acoustic wave resonators with hetero acoustic layer (HAL) structure using lithium tantalate and quartz[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 1955-1964(2021).

    [12] Yan X, Liu Y, Ge L et al. High optical damage threshold on-chip lithium tantalate microdisk resonator[J]. Optics Letters, 45, 4100-4103(2020).

    [13] Lee D, Kim I, Lee K J. Study on a polarization-entangled photon-pair source based on niobium-doped potassium titanyl phosphate[J]. Journal of the Korean Physical Society, 78, 776-783(2021).

    [14] Neufeld S, Bocchini A, Gerstmann U et al. Potassium titanyl phosphate (KTP) quasiparticle energies and optical response[J]. Journal of Physics: Materials, 2, 045003(2019).

    [15] Gu J H, Schweinsberg A, Vanderhoef L et al. Random quasi-phase-matching in polycrystalline media and its effects on pulse coherence properties[J]. Optics Express, 29, 7479-7493(2021).

    [16] Du J H, Song W, Zhang H J. Advances in three-dimensional quasi-phase matching[J]. Chinese Journal of Lasers, 48, 1208001(2021).

    [17] Zhang Y T, Qu Q Z, Qian J et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 42, 0708002(2015).

    [18] Zhang Y, Zeng Z N. Terahertz field modulated quasi-phase-matched high-order harmonic generation[J]. Chinese Journal of Lasers, 47, 0614001(2020).

    [19] Zhao R Z, Xu Y G, Lu R et al. Second-harmonic generation of single-mode Laguerre-Gaussian beams with an improved quasi-phase-matching method[J]. Optics Express, 28, 39241-39249(2020).

    [20] Savo R, Morandi A, Müller J S et al. Broadband Mie driven random quasi-phase-matching[J]. Nature Photonics, 14, 740-747(2020).

    [21] Szatkowski M, Masajada J, Augustyniak I et al. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing[J]. Optics Communications, 463, 125341(2020).

    [22] Ma W Q, Lu H M, Wang J P et al. Vortex beam generation based on spatial light modulator and deep learning[J]. Acta Optica Sinica, 41, 1107001(2021).

    [23] Anderson M E, Serrano A, Stinson C et al. Spatial manipulation of a supercontinuum beam for the study of vortex interference effects[J]. Applied Sciences, 10, 1966-2008(2020).

    [24] Hearne J A, Tsvetkov P V. Power profile reconstruction and anomaly detection approach for FHRs using cerenkov radiation[J]. Nuclear Technology, 206, 1740-1750(2020).

    [25] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).

    [26] Hou B, Xu G, Wen W J et al. Diffraction by an optical fractal grating[J]. Applied Physics Letters, 85, 6125-6127(2004).

    [27] Mossoulina O A, Volotovsky S G. Diffraction on random fractal structures[J]. Journal of Physics: Conference Series, 1038, 012092(2018).

    [28] Ma B Q, Shi J H, Tian S H. Distribution of reciprocal vectors based on diffraction patterns of superlattice structures[J]. Acta Photonica Sinica, 44, 0506001(2015).

    [29] Ma B Q, Ren M L, Ma D L et al. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure[J]. Applied Physics B, 111, 183-187(2013).

    [30] Ma B Q, Wang T, Ni P G et al. High-order quasi-phase-matching harmonic generation in two-dimensional orthorhombic lattice[J]. Europhysics Letters (EPL), 68, 804-810(2004).

    [31] Ma B Q, Wang T, Sheng Y et al. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice[J]. Applied Physics Letters, 87, 251103(2005).

    Jiafu Lü, Boqin Ma, Xueying Wang. Quasi-Phase-Matching Based on Hilbert Fractal Superlattice Structure[J]. Chinese Journal of Lasers, 2022, 49(6): 0608001
    Download Citation