• Acta Optica Sinica
  • Vol. 40, Issue 17, 1704002 (2020)
Ruiwen Xiao1, Junyu Xiao1, Ping Jin1, Rongxuan Zhang1, and Lei Wang1、2、3、*
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China;
  • 2National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
  • 3Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    DOI: 10.3788/AOS202040.1704002 Cite this Article Set citation alerts
    Ruiwen Xiao, Junyu Xiao, Ping Jin, Rongxuan Zhang, Lei Wang. High-Efficiency Visual Terahertz Detector Based on Three-Dimensional Porous Graphene and Cholesteric Liquid Crystal Microcapsule[J]. Acta Optica Sinica, 2020, 40(17): 1704002 Copy Citation Text show less
    References

    [1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 54, 120101(2015).

    [4] Wang Y, Shen X L, Zhu Q F et al. Optical planar and ridge waveguides in terbium gallium garnet produced by ion implantation and precise diamond blade dicing[J]. Optical Materials Express, 8, 3288-3294(2018).

    [5] Liang M Y, Ren Z Y, Zhang C L. Progress of terahertz space exploration technology[J]. Laser & Optoelectronics Progress, 56, 180004(2019).

    [8] Ophir Photonics[2020-04-14]. Pyrocam IIIHR beam profiling camera [2020-04-14].http:∥www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR..

    [10] Keilmann F, Renk K F. Visual observation of submillimeter wave laser beams[J]. Applied Physics Letters, 18, 452-454(1971).

    [11] Chen I A, Park S W, Chen G et al. Ultra-broadband wavelength conversion sensor using thermochromic liquid crystals[J]. Proceedings of SPIE, 8624, 862415(2013).

    [12] Tadokoro Y, Nishikawa T, Kang B et al. Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals[J]. Optics Letters, 40, 4456(2015).

    [13] Wang L, Qiu H S. Phan T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film[J]. Applied Science, 8, 2580(2018).

    [14] Kang B, Takano K, Nakajima M et al. Portable THz imager based on a metamaterial- cholesteric liquid crystal hybrid structure. [C]∥2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), August 27- September 1, 2017, Cancun, Mexico. New York: IEEE(2017).

    [15] Fang B, Qi C K, Deng Y Q et al. Characteristics of highly absorptive coatings used in terahertz radiometry[J]. Chinese Journal of Lasers, 46, 0614020(2019).

    [16] Huang Z Y, Chen H H, Huang Y et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials, 28, 1704363(2018).

    [17] Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials[J]. Solid State Communications, 152, 1331-1340(2012).

    [18] Schwartz M, Lenzini G, Geng Y et al. Liquid crystals: cholesteric liquid crystal shells as enabling material for information-rich design and architecture[J]. Advanced Materials, 30, 1870221(2018).

    [19] Jiang H Y, Tang Y Y, Zeng X H et al. Visual measurement of the microscopic temperature of porous graphene based on cholesteric liquid crystal microcapsules[J]. Chinese Optics Letters, 18, 031201(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJd3d46664feba7135

    [20] Hebling J, Yeh K L, Hoffmann M C et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 25, B6-B19(2008).

    [21] Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 98, 091106(2011).

    [22] Stasiek J, Stasiek A, Jewartowski M et al. Liquid crystal thermography and true-colour digital image processing[J]. Optics & Laser Technology, 38, 243-256(2006).

    [23] Hay J L, Hollingsworth D K. A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals[J]. Experimental Thermal and Fluid Science, 12, 1-12(1996).

    [24] Baughn J W, Anderson M R, Mayhew J E et al. Hysteresis of thermochromic liquid crystal temperature measurement based on hue[J]. Journal of Heat Transfer, 121, 1067-1072(1999).

    [25] Yan J, Huang Y, Chen C et al. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorber[J]. Carbon, 152, 545-555(2019).

    Ruiwen Xiao, Junyu Xiao, Ping Jin, Rongxuan Zhang, Lei Wang. High-Efficiency Visual Terahertz Detector Based on Three-Dimensional Porous Graphene and Cholesteric Liquid Crystal Microcapsule[J]. Acta Optica Sinica, 2020, 40(17): 1704002
    Download Citation