• Chinese Journal of Lasers
  • Vol. 48, Issue 4, 0401011 (2021)
Xiang Han, Xinlin Chen, Wei Xiong, Tengfang Kuang, Zhijie Chen, Miao Peng, Guangzong Xiao*, Kaiyong Yang, and Hui Luo
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202148.0401011 Cite this Article Set citation alerts
    Xiang Han, Xinlin Chen, Wei Xiong, Tengfang Kuang, Zhijie Chen, Miao Peng, Guangzong Xiao, Kaiyong Yang, Hui Luo. Vaccum Optical Tweezers System and its Research Progress in Precision Measurement[J]. Chinese Journal of Lasers, 2021, 48(4): 0401011 Copy Citation Text show less
    References

    [1] Einstein A. Concerning an heuristic point of view toward the emission and transformation of light[J]. Annalen der Physik, 17, 132-148(1905). http://www.mendeley.com/catalog/concerning-heuristic-point-view-toward-emission-transformation-light/

    [2] Zhang W P[M]. Advances in quantum optics, 127-129(2014).

    [3] Li Y M, Yao K[M]. Optical tweezers, 6-17(2015).

    [4] Jones P H, Marago O, Volpe G[M]. Optical tweezers: principles & applications, 2-11(2015).

    [5] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970). http://intl-icb.oxfordjournals.org/external-ref?access_num=10.1103/PhysRevLett.24.156&link_type=DOI

    [6] Ashkin A, Dziedzic J M. Stability of optical levitation by radiation pressure[J]. Applied Physics Letters, 24, 586-588(1974). http://scitation.aip.org/content/aip/journal/apl/24/12/10.1063/1.1655064

    [7] Ashkin A, Dziedzic J M. Optical levitation in high vacuum[J]. Applied Physics Letters, 28, 333-335(1976). http://scitation.aip.org/content/aip/journal/apl/28/6/10.1063/1.88748

    [8] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [10] Wang M D, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 72, 1335-1346(1997).

    [11] Guck J, Ananthakrishnan R, Mahmood H et al. The optical stretcher: a novel laser tool to micromanipulate cells[J]. Biophysical Journal, 81, 767-784(2001).

    [12] Cecconi C, Shank E A, Bustamante C et al. Direct observation of the three-state folding of a single protein molecule[J]. Science, 309, 2057-2060(2005).

    [13] Dholakia K, Zemánek P. Colloquium: gripped by light: optical binding[J]. Reviews of Modern Physics, 82, 1767-1791(2010). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000019000012000001000001&idtype=cvips&gifs=Yes

    [14] Han X, Jones P H. Evanescent wave optical binding forces on spherical microparticles[J]. Optics Letters, 40, 4042-4045(2015). http://www.osapublishing.org/ol/abstract.cfm?uri=ol-40-17-4042

    [15] Donato M G, Brzobohatý O, Simpson S H et al. Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams[J]. Nano Letters, 19, 342-352(2019). http://www.researchgate.net/publication/329493662_Optical_Trapping_Optical_Binding_and_Rotational_Dynamics_of_Silicon_Nanowires_in_Counter-Propagating_Beams

    [16] Li T C, Kheifets S, Raizen M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Physics, 7, 527-530(2011).

    [17] Gieseler J, Deutsch B, Quidant R et al. Sub-Kelvin parametric feedback cooling of a laser-trapped nanoparticle[J]. Physical Review Letters, 109, 103603(2012). http://www.ncbi.nlm.nih.gov/pubmed/23005289

    [18] Conangla G P, Ricci F, Cuairan M T et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control[J]. Physical Review Letters, 122, 223602(2019). http://www.ncbi.nlm.nih.gov/pubmed/31283263

    [19] Tebbenjohanns F, Frimmer M, Militaru A et al. Cold damping of an optically levitated nanoparticle to microkelvin temperatures[J]. Physical Review Letters, 122, 223601(2019). http://www.ncbi.nlm.nih.gov/pubmed/31283294

    [20] Li T C, Kheifets S, Medellin D et al. Measurement of the instantaneous velocity of a Brownian particle[J]. Science, 328, 1673-1675(2010).

    [21] Hebestreit E, Reimann R, Frimmer M et al. Measuring the internal temperature of a levitated nanoparticle in high vacuum[J]. Physical Review A, 97, 043803(2018). http://arxiv.org/abs/1801.01164

    [22] Blakemore C P, Rider A D, Roy S et al. Precision mass and density measurement of individual optically levitated microspheres[J]. Physical Review Applied, 12, 024037(2019). http://arxiv.org/abs/1902.05481

    [23] Monteiro F, Li W Q, Afek G et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures[J]. Physical Review A, 101, 053835(2020). http://arxiv.org/abs/2001.10931

    [24] Barker P F. Doppler cooling a microsphere[J]. Physical Review Letters, 105, 073002(2010).

    [25] Yin Z Q, Geraci A A, Li T C. Optomechanics of levitated dielectric particles[J]. International Journal of Modern Physics B, 27, 1330018(2013). http://www.worldscientific.com/doi/10.1142/S0217979213300181

    [26] Li N, Zhu X M, Li W Q et al. Review of optical tweezers in vacuum[J]. Frontiers of Information Technology & Electronic Engineering, 20, 655-673(2019). http://www.cqvip.com/QK/89589A/201905/7002272417.html

    [27] Zheng Y, Guo G C, Sun F W. Cooling of a levitated nanoparticle with digital parametric feedback[J]. Applied Physics Letters, 115, 101105(2019). http://arxiv.org/abs/1904.06410?context=physics

    [28] Xiao G Z, Kuang T F, Luo B et al. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers[J]. Optics Express, 27, 36653-36661(2019). http://www.ncbi.nlm.nih.gov/pubmed/31873439

    [29] Jin Y B, Yu X D, Zhang J. Optically levitated nanosphere with high trapping frequency[J]. Science China Physics, Mechanics & Astronomy, 61, 114221(2018). http://www.cnki.com.cn/Article/CJFDTotal-JGXG201811012.htm

    [30] Ranjit G, Cunningham M, Casey K et al. Zeptonewton force sensing with nanospheres in an optical lattice[J]. Physical Review A, 93, 053801(2016).

    [31] Xiong W, Yin Z Q, Zhang X B et al. Advance of optomechanical inertial sensing technology[J]. Navigation Positioning and Timing, 5, 1-8(2018).

    [32] Millen J, Monteiro T S, Pettit R et al. Optomechanics with levitated particles[J]. Reports on Progress in Physics., 83, 026401(2020).

    [33] Lu K, Li Q S, Zhou X et al. Advanced sensing technology based on the optical trapping force[J]. Journal of Mechanical Engineering, 56, 16-31(2020).

    [34] Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Communications, 124, 529-541(1996).

    [35] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 61, 569-582(1992).

    [36] Chen X L, Xiao G Z, Luo H et al. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset[J]. Optics Express, 24, 7575-7584(2016). http://dx.doi.org/10.1364/oe.24.007575

    [37] Chen X L, Xiao G Z, Yang K Y et al. Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset[J]. Optics Express, 24, 16952-16960(2016). http://www.ncbi.nlm.nih.gov/pubmed/27464147

    [38] Chang Y R, Hsu L, Chi S E. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells[J]. Applied Optics, 45, 3885-3892(2006). http://www.ncbi.nlm.nih.gov/pubmed/16724154

    [39] Xiong W, Xiao G Z, Han X et al. Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps[J]. Optics Express, 25, 9449-9457(2017). http://europepmc.org/abstract/MED/28437907

    [40] Zhou J H, Ren H L, Cai J et al. Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers[J]. Applied Optics, 47, 6307-6314(2008).

    [41] Callegari A, Mijalkov M, Burak Gököz A et al. Computational toolbox for optical tweezers in geometrical optics[J]. Journal of the Optical Society of America B, 32, B11-B19(2015). http://www.onacademic.com/detail/journal_1000038227666010_5378.html

    [42] Gauthier R C. Computation of the optical trapping force using an FDTD based technique[J]. Optics Express, 13, 3707-3718(2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-10-3707

    [43] Gouesbet G, Lock J A. On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: a review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 162, 31-49(2015). http://www.sciencedirect.com/science/article/pii/S0022407314004683

    [44] Atia K S, Heikal A M, Obayya S S. Efficient smoothed finite element time domain analysis for photonic devices[J]. Optics Express, 23, 22199-22213(2015). http://europepmc.org/abstract/med/26368193

    [45] Nieminen T A. Loke V L Y, Stilgoe A B, et al. Optical tweezers computational toolbox[J]. Journal of Optics A: Pure and Applied Optics, 9, S196-S203(2007).

    [46] Zhang Y K, Chen X L, Xiao G Z et al. Simulation and optimization design of dual beam optical trap based on T-matrix[J]. Acta Optica Sinica, 34, s214004(2014).

    [47] Wong V, Ratner M A. Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles[J]. Physical Review B, 73, 075416(2006). http://prb.aps.org/abstract/PRB/v73/i7/e075416

    [48] Li H, Cao Y Y, Zhou L M et al. Optical pulling forces and their applications[J]. Advances in Optics and Photonics, 12, 288-366(2020). http://www.researchgate.net/publication/339083334_Optical_Pulling_Forces_and_Their_Applications

    [49] Gieseler J, Quidant R, Dellago C et al. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state[J]. Nature Nanotechnology, 9, 358-364(2014). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=96038025&site=ehost-live

    [50] Hoang T M, Pan R, Ahn J et al. Experimental test of the differential fluctuation theorem and a generalized jarzynski equality for arbitrary initial states[J]. Physical Review Letters, 120, 080602(2018). http://europepmc.org/abstract/MED/29542995

    [51] Kramers H A. Brownian motion in a field of force and the diffusion model of chemical reactions[J]. Physica, 7, 284-304(1940). http://www.sciencedirect.com/science/article/pii/S0031891440900982

    [52] Rondin L, Gieseler J, Ricci F et al. Direct measurement of Kramers turnover with a levitated nanoparticle[J]. Nature Nanotechnology, 12, 1130-1133(2017). http://europepmc.org/abstract/MED/29209016

    [53] Ashkin A, Dziedzic J M. Feedback stabilization of optically levitated particles[J]. Applied Physics Letters, 30, 202-204(1977). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4846486

    [54] Wulff K D, Cole D G, Clark R L. Adaptive disturbance rejection in an optical trap[J]. Applied Optics, 47, 3585-3589(2008). http://www.ncbi.nlm.nih.gov/pubmed/18617975

    [55] Tauro S, Bañas A, Palima D et al. Dynamic axial stabilization of counter-propagating beam-traps with feedback control[J]. Optics Express, 18, 18217-18222(2010).

    [56] Wallin A E, Ojala H, Hæggström E et al. Stiffer optical tweezers through real-time feedback control[J]. Applied Physics Letters, 92, 224104(2008). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4833166

    [57] Ojala H, Korsbäck A, Wallin A E et al. Optical position clamping with predictive control[J]. Applied Physics Letters, 95, 181104(2009).

    [58] Visscher K, Block S M. Versatile optical traps with feedback control[J]. Methods in Enzymology, 298, 460-489(1998). http://europepmc.org/abstract/MED/9751903

    [59] Wulff K D, Cole D G, Clark R L. Servo control of an optical trap[J]. Applied Optics, 46, 4923-4931(2007).

    [60] Chang D E, Regal C A, Papp S B et al. Cavity opto-mechanics using an optically levitated nanosphere[J]. PNAS, 107, 1005-1010(2010). http://dx.doi.org/10.1073/pnas.0912969107

    [61] Li T C. Towards quantum ground-state cooling[M]. New York: Springer, 111-122(2012).

    [62] Millen J, Deesuwan T, Barker P et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere[J]. Nature Nanotechnology, 9, 425-429(2014).

    [63] Jauffred L. Taheri S M R, Schmitt R, et al. Optical trapping of gold nanoparticles in air[J]. Nano Letters, 15, 4713-4719(2015).

    [64] Jain V, Gieseler J, Moritz C et al. Direct measurement of photon recoil from a levitated nanoparticle[J]. Physical Review Letters, 116, 243601(2016). http://www.ncbi.nlm.nih.gov/pubmed/27367388

    [65] Hoang T M, Ahn J, Bang J et al. Electron spin control of optically levitated nanodiamonds in vacuum[J]. Nature Communications, 7, 12250(2016).

    [66] Moore D C, Rider A D, Gratta G. Search for millicharged particles using optically levitated microspheres[J]. Physical Review Letters, 113, 251801(2014). http://europepmc.org/abstract/MED/25554874

    [67] Vovrosh J, Rashid M, Hempston D et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap[J]. Journal of the Optical Society of America B, 34, 1421-1428(2017).

    [68] Chen X L, Xiao G Z, Han X et al. Observation of spin and orbital rotation of red blood cell in dual-beam fibre-optic trap with transverse offset[J]. Journal of Optics, 19, 055612(2017).

    [69] Boerkamp M, van Leest T, Heldens J et al. On-chip optical trapping and Raman spectroscopy using a Triplex dual-waveguide trap[J]. Optics Express, 22, 30528-30537(2014).

    [70] Paiè P, Zandrini T, Vázquez R M et al. Particle manipulation by optical forces in microfluidic devices[J]. Micromachines, 9, 200(2018). http://www.ncbi.nlm.nih.gov/pubmed/30424133

    [71] Xiao G Z, Kuang T F, Xiong W et al. A PZT-assisted single particle loading method for dual-fiber optical trap in air[J]. Optics & Laser Technology, 126, 106115(2020). http://www.sciencedirect.com/science/article/pii/S0030399219309934

    [72] Fu Z H, She X, Li N et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap[J]. Optics Communications, 417, 103-109(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=0e52b27113e9db6c9d156168b1f3b05e

    [73] Crocker J C, Grier D G. Methods of digital video microscopy for colloidal studies[J]. Journal of Colloid and Interface Science, 179, 298-310(1996). http://www.sciencedirect.com/science/article/pii/S0021979796902179

    [74] Han X, Luo H, Xiao G et al. Optically bound colloidal lattices in evanescent optical fields[J]. Optics Letters, 41, 4935-4938(2016). http://www.ncbi.nlm.nih.gov/pubmed/27805654

    [75] Luan Q J, Han X, Xiao G Z et al. Coupling effects in position observations due to residual misalignments of imaging axes in counter-propagating dual-beam optical traps[J]. Optics Communications, 426, 642-647(2018). http://www.sciencedirect.com/science/article/pii/S0030401818304425

    [76] Finer J T, Simmons R M, Spudich J A. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature, 368, 113-119(1994). http://link.springer.com/article/10.1038/368113a0

    [77] Gittes F, Schmidt C F. Interference model for back-focal-plane displacement detection in optical tweezers[J]. Optics Letters, 23, 7-9(1998). http://nar.oxfordjournals.org/external-ref?access_num=10.1364/OL.23.000007&link_type=DOI

    [78] Rohrbach A. Stelzer E H K. Three-dimensional position detection of optically trapped dielectric particles[J]. Journal of Applied Physics, 91, 5474-5488(2002). http://scitation.aip.org/content/aip/journal/jap/91/8/10.1063/1.1459748

    [79] Huisstede J H G, Bennink M L et al. Force detection in optical tweezers using backscattered light[J]. Optics Express, 13, 1113-1123(2005).

    [80] Liu H J, Chen X L, Xiao G Z et al. Particle's sub-nanometer displacement measurement based on the back-focal-plane method in optical trap[J]. Laser & Optoelectronics Progress, 52, 071204(2015).

    [81] Garbos M K, Euser T G, Schmidt O A et al. Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber[J]. Optics Letters, 36, 2020-2022(2011).

    [82] Zhang Y, Liang P B, Liu Z H et al. A novel temperature sensor based on optical trapping technology[J]. Journal of Lightwave Technology, 32, 1394-1398(2014).

    [83] Xiong W, Xiao G Z, Han X et al. All-fiber interferometer for displacement and velocity measurement of a levitated particle in fiber-optic traps[J]. Applied Optics, 58, 2081-2084(2019).

    [84] García L P, Pérez J D, Volpe G et al. High-performance reconstruction of microscopic force fields from Brownian trajectories[J]. Nature Communications, 9, 5166(2018).

    [85] Sayed R, Kalantarifard F, Elahi P et al. Intracavity optical trapping with ytterbium doped fiber ring laser[J]. Proceedings of SPIE, 8810, 88102S(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1738154

    [86] Kalantarifard F, Elahi P, Makey G et al. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser[J]. Nature Communications, 10, 2683(2019). http://www.researchgate.net/publication/333851757_Intracavity_optical_trapping_of_microscopic_particles_in_a_ring-cavity_fiber_laser

    [87] Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems[J]. Physics Reports, 534, 89-146(2014).

    [88] Ranjit G, Atherton D P, Stutz J H et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum[J]. Physical Review A, 91, 051805(2015). http://www.oalib.com/paper/3448590

    [89] Geraci A, Goldman H. Sensing short range forces with a nanosphere matter-wave interferometer[J]. Physical Review D, 92, 062002(2015). http://arxiv.org/abs/1412.4482

    [90] Monteiro F, Ghosh S, Fine A G et al. Optical levitation of 10-ng spheres with nano- g acceleration sensitivity[J]. Physical Review A, 96, 063841(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.063841

    [91] Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum[J]. Nature Communications, 4, 2374(2013). http://www.ncbi.nlm.nih.gov/pubmed/23982323

    [92] Reimann R, Doderer M, Hebestreit E et al. GHz rotation of an optically trapped nanoparticle in vacuum[J]. Physical Review Letters, 121, 033602(2018). http://arxiv.org/abs/1803.11160

    [93] Ahn J, Xu Z J, Bang J et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor[J]. Physical Review Letters, 121, 033603(2018). http://arxiv.org/abs/1804.06570

    [94] Ahn J, Xu Z J, Bang J et al. Ultrasensitive torque detection with an optically levitated nanorotor[J]. Nature Nanotechnology, 15, 89-93(2020). http://www.researchgate.net/publication/338562061_Ultrasensitive_torque_detection_with_an_optically_levitated_nanorotor

    [95] Li C Y, Chou T W. Mass detection using carbon nanotube-based nanomechanical resonators[J]. Applied Physics Letters, 84, 5246-5248(2004). http://dx.doi.org/10.1063/1.1764933

    [96] Endo D, Yabuno H, Higashino K et al. Self-excited coupled-microcantilevers for mass sensing[J]. Applied Physics Letters, 106, 223105(2015).

    [97] Ricci F, Cuairan M T, Conangla G P et al. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing[J]. Nano Letters, 19, 6711-6715(2019). http://www.ncbi.nlm.nih.gov/pubmed/30888180

    [98] Zheng Y, Zhou L M, Dong Y et al. Robust optical-levitation-based metrology of nanoparticle's position and mass[J]. Physical Review Letters, 124, 223603(2020). http://arxiv.org/abs/2002.02320

    [99] Kim P H, Hauer B D, Doolin C et al. Approaching the standard quantum limit of mechanical torque sensing[J]. Nature Communications, 7, 13165(2016).

    [100] Arvanitaki A, Geraci A A. Detecting high-frequency gravitational waves with optically levitated sensors[J]. Physical Review Letters, 110, 071105(2013).

    [101] Pontin A, Mourounas L S, Geraci A A et al. Levitated optomechanics with a fiber Fabry-Perot interferometer[J]. New Journal of Physics, 20, 023017(2018). http://arxiv.org/abs/1706.10227

    [102] Teufel J D, Donner T, Li D et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 475, 359-363(2011).

    [103] Chan J, Alegre T P. Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 478, 89-92(2011).

    [104] Jain V, Tebbenjohanns F, Novotny L. Microkelvin control of an optically levitated nanoparticle. [C]// Frontiers in Optics 2016, October 17-21, 2016, Rochester, New York. Washington, D.C.: OSA, FF5B, 2(2016).

    [106] Monteiro F, Afek G, Carney D et al. Search for composite dark matter with optically levitated sensors[J]. Physical Review Letters, 125, 181102(2020). http://arxiv.org/abs/2007.12067

    Xiang Han, Xinlin Chen, Wei Xiong, Tengfang Kuang, Zhijie Chen, Miao Peng, Guangzong Xiao, Kaiyong Yang, Hui Luo. Vaccum Optical Tweezers System and its Research Progress in Precision Measurement[J]. Chinese Journal of Lasers, 2021, 48(4): 0401011
    Download Citation