• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2330001 (2021)
Zhenhan Li1、2、*, Yue Yu3, and Rui Guo4
Author Affiliations
  • 1School of Automation, Guangdong University of Technology, Guangzhou , Guangdong 510006, China
  • 2Beijing Reyin Instrument Technology Co., Ltd., Beijing 100088, China
  • 3China Special Equipment Inspection And Research Institute, Beijing 100029, China
  • 4Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, China
  • show less
    DOI: 10.3788/LOP202158.2330001 Cite this Article Set citation alerts
    Zhenhan Li, Yue Yu, Rui Guo. Performance Comparison of Pulsed and Continuous Quantum Cascade Lasers in Nitric Oxide Detection[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2330001 Copy Citation Text show less
    References

    [1] Vitiello M S, Scalari G, Williams B et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 23, 5167-5182(2015).

    [2] Bandyopadhyay N, Bai Y, Slivken S et al. High power operation of λ~5.2-11 μm strain balanced quantum cascade lasers based on the same material composition[J]. Applied Physics Letters, 105, 071106(2014).

    [3] Hu J, Liu Y D, Ouyang A G et al. Mid-infrared spectroscopy detection of methanol content in methanol gasoline based on CARS band screening[J]. Laser & Optoelectronics Progress, 56, 233002(2019).

    [4] Nelson D D, McManus B, Urbanski S et al. High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 3325-3335(2004).

    [5] Bomse D S, Stanton A C, Silver J A. Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser[J]. Applied Optics, 31, 718-731(1992).

    [6] Zhao Q C. Development of a mid-infrared methane and carbon dioxide dual-gas sensor system[J]. Acta Optica Sinica, 40, 2330001(2020).

    [7] Dang J M, Yu H Y, Sun Y J et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 82, 183-191(2017).

    [8] Ma S, Wu T, Sun C L et al. Real-time exhaled CO2 gas measurement using a mid-infrared hollow waveguide fiber[J]. Acta Optica Sinica, 40, 1130001(2020).

    [9] Li M Y, Wang F, Zhang Y Q. Measurement of nitric oxide with low concentration based on mid-infrared laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 55, 053002(2018).

    [10] Grouiez B, Parvitte B, Joly L et al. Alternative method for gas detection using pulsed quantum-cascade-laser spectrometers[J]. Optics Letters, 34, 181-183(2009).

    [11] Murata M, Yoshinaga H, Migita M et al. Compact and low power-consumption MIR DFB-QCL with To-CAN package for portable sensor[J]. Proceedings of SPIE, 10540, 105401O(2018).

    [12] Bjorklund G C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions[J]. Optics Letters, 5, 15-17(1980).

    [13] Wang L, Tan T, Cao Z S et al. Research on vehicle-based remote sensing of natural gas pipeline leakage[J]. Spectroscopy and Spectral Analysis, 30, 2192-2195(2010).

    [14] Wang F, Huang Q X, Li N et al. The tunable diode laser absorption spectroscoty for measurement of NH3 with particles[J]. Acta Physica Sinica, 56, 3867-3872(2007).

    [15] Zhang J, Zhu Y, Chen J Q et al. Study on online self-calibration technique for trace gas analyzer based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 30, 1030-1034(2010).

    [16] Zhang L J, Xiao L T, Li C Y et al. Experimental study of harmonics detection by use of a digital lock-in amplifier[J]. Laser & Infrared, 30, 311-313(2000).

    [17] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).

    [18] Kluczynski P, Gustafsson J, Lindberg Å M et al. Wavelength modulation absorption spectrometry: an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 1277-1354(2001).

    [19] Liger V, Zybin A, Kuritsyn Y et al. Diode-laser atomic-absorption spectrometry by the double-beam-double-modulation technique[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 52, 1125-1138(1997).

    [20] Sun H C, Whittaker E A. Novel étalon fringe rejection technique for laser absorption spectroscopy[J]. Applied Optics, 31, 4998-5002(1992).

    [21] Liger V V. Optical fringes reduction in ultrasensitive diode laser absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2021-2026(1999).

    [22] Hartmann A, Strzoda R, Schrobenhauser R et al. Arithmetical elimination of superimposed interference modulation in laser spectroscopic gas concentration measurements[J]. Procedia Engineering, 47, 1350-1353(2012).

    Zhenhan Li, Yue Yu, Rui Guo. Performance Comparison of Pulsed and Continuous Quantum Cascade Lasers in Nitric Oxide Detection[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2330001
    Download Citation