• Matter and Radiation at Extremes
  • Vol. 5, Issue 2, 26402 (2020)
N. R. Pereira*
Author Affiliations
  • Ecopulse, Inc., Springfield, Virginia 22152, USA
  • show less
    DOI: 10.1063/1.5133378 Cite this Article
    N. R. Pereira. Whence Z-pinches? A personal view[J]. Matter and Radiation at Extremes, 2020, 5(2): 26402 Copy Citation Text show less
    References

    [1] General background on this topic can be found via a web search on the term “history of fusion”.

    [2] T. H. Martin, M. Christianson, A. H. Gunther. J C Martin on Pulsed Power(1996).

    [3] J. L. Giuliani, R. J. Commisso. A review of the gas-puff Z-pinch as an X-ray and neutron source. IEEE Trans. Plasma Sci., 43, 2385-2453(2015).

    [4] S. A. Slutz et al. Phys. Plasmas, 17, 056303(2010).

    [5] S. M. Miller et al. Laser gate experiment for increasing preheat energy coupling efficiency in magnetized liner inertial fusion (MagLIF). Matter Radiat. Extremes(2019).

    [6] J. Woolstrum et al. Validation of perseus and convergence ratio effects on Z-pinch implosions. Matter Radiat. Extremes(2019).

    [7] S. Bland et al. New insights into the pulsed power driven explosion of underwater wires and wire arrays. Matter Radiat. Extremes(2019).

    [8] S. Lebedev et al. Z-pinch driven laboratory astrophysics experiments at imperial college. Matter Radiat. Extremes(2019).

    [9] S. V. Lebedev, D. D. Ryutov, A. Frank. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. Rev. Mod. Phys., 91, 025002(2019).

    [10] https://en.wikipedia.org/wiki/Large_electrostatic_generator_(Teylers)

    [11] A. Allerhand. Who invented the earliest capacitor bank (“battery” of leyden jars)? it's complicated [scanning our past]. Proc. IEEE, 106, 496(2018).

    [12] Pulsed power’s potential for military use has a long history. Around 1800 the French Emperor Napoleon came to Teyler’s museum to look this capacitor bank for its military potential. It was built in The Netherlands around 1790, by an English craftsman working abroad; Charlie Martin did something similar but in the US. The relative cost of the largest machines (∼1 $/J) remained roughly similar as well.

    [13] M. G. Haines. A review of the dense Z-pinch. Plasma Phys. Controlled Fusion, 53, 093001(2011).

    [14] N. R. Pereira. A simple derivation of the Pease-Braginskiǐ current. Phys. Fluids B, 2, 677(1990).

    [15] N. R. Pereira, R. E. Terry. Leakage currents outside an imploding Z-pinch. Phys. Fluids B, 3, 195(1991).

    [16] S. Cordaro et al. High voltage coaxial vacuum gap breakdown for pulsed power liners. Matter Radiat. Extremes(2019).

    [17] N. J. Fish, I. Y. Dodin. Correction to the Alfvén-Lawson criterion for relativistic electron beams. Phys. Plasmas, 13, 103104(2006).

    [18] J. Chittenden et al. Z-pinch simulations at imperial college. Matter Radiat. Extremes(2019).

    [19]

    [20]

    [21] M. H. Chen, W. L. Morgan, R. W. Lee, H.-K. Chung, Yu. Ralchenko. Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys., 1, 3(2005).

    [22] A. Safronova et al. Overview of x-ray time-gated spectroscopy and imaging of 1 Ma wire array Z-pinches. Matter Radiat. Extremes(2019).

    [23] C. Fontes, H. Scott, S. Hansen, H. Chung, E. Stambulchik, Yu. Ralchenko(2019).

    [24] K. G. Whitney, N. R. Pereira. Non-Maxwellian electron-energy distribution due to inelastic collisions in a Z-pinch plasma. Phys. Rev. A, 38, 319(1988).

    [25] C. Ning et al. Numerical invesigation into the Z-pinch process of rarefied deuterium plasma shell by PIC and MHD simulations. Matter Radiat. Extremes(2019).

    [26] T. A. Shelkovenko, D. A. Hammer, S. A. Pikuz. X-pinch. Part II. Plasma Phys. Rep., 41, 445-491(2015).

    [27] B. J. Albright, E. L. Vold, L. Yin, W. D. Nystrom, K. J. Bowers, R. F. Bird. Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions. Phys. Plasmas, 26, 062302(2019).

    [28] A. A. Anderson, V. V. Ivanov, D. Papp. Investigation of wire-array Z-pinches by laser probing diagnostics. Matter Radiat. Extremes, 4, 017401(2019).

    [29] V. V. Ivanov, R. C. Mancini, S. D. Altemara, P. Hakel, A. A. Anderson, N. Niasse, D. Papp, J. P. Chittenden. Study of the internal structure and small-scale instabilities in the dense Z-pinch. Phys. Rev. Lett., 107, 165002(2011).

    [30] D. V. Fisher, V. I. Fisher, A. Starobinets, M. E. Cuneo, B. Jones, C. A. Jennings, Y. Maron, E. P. Yu, G. A. Rochau, C. A. Coverdale, G. Dunham, C. Deeney, P. W. Lake, S. B. Hansen, L. Weingarten, V. Bernshtam, J. E. Bailey, D. J. Ampleford. Doppler measurement of implosion velocity in fast Z-pinch x-ray sources. Phys. Rev. E, 84, 056408(2011).

    [31] B. M. Marder, J. P. Apruzese, D. Mosher, D. L. Peterson, G. O. Allshouse, T. L. Gilliland, M. R. Douglas, J. S. McGurn, J. H. Hammer, Y. Maron, D. Jobe, P. E. Pulsifer, R. C. Mock, T. J. Nash, J. L. Eddleman, J. F. Seamen, J. S. de Groot, K. G. Whitney, W. A. Stygar, R. B. Spielman, T. W. Sanford, M. K. Matzen, K. W. Struve, M. Vargas, J. W. Thornhill. Improved symmetry greatly increases X-ray power from wire-array Z-pinches. Phys. Rev. Lett., 77, 5063-5066(1996).

    [32] K. Ware et al(1992).

    [33]

    [34] D. Klir et al. Deuterium gas-puff Z-pinch experiments on mega-ampere pulsed-power generators. Matter Radiat. Extremes(2019).

    [35] W. Zou et al. Progress and outlook of pulsed power driver on the road to fusion. Matter Radiat. Extremes(2019).

    [36] T. Clayson et al. M3: A new pulsed power machine dedicated to inertial confinement fusion experiments. Matter Radiat. Extremes(2019).

    [37]

    [38] H. C. Andersen. The Emperor’s New Clothes(1837).

    [39] P. Patel et al. Progress towards achieving ignition on the National Ignition Facility.

    [40] N. R. Pereira, J. Davis. X-rays from Z-pinches on relativistic electron-beam generators. J. Appl. Phys., 64, R1(1988).

    [41] K. N. Koshelev, N. R. Pereira. Plasma points and radiative collapse in vacuum sparks. J. Appl. Phys., 69, R21(1991).

    [42] A. Bernard et al. Scientific status of plasma focus research. J. Moscow Phys. Soc., 8, 93(1998).

    [43] M. A. Liberman et al. Physics of High-Density Z-Pinch Plasmas(1999).

    [44] M. K. Matzen, M. S. Derzon, D. D. Ryutov. The physics of fast Z pinches. Rev. Mod. Phys., 72, 167(2000).

    [45] M. G. Haines et al. The past, present, and future of Z pinches. Phys. Plasmas, 7, 1672(2000).

    [46] M. Cuneo et al. Magnetically driven implosions for ICF at SNL. IEEE Trans. Plasma Sci., 40, 3222(2012).

    [47] D. D. Ryutov. Characterizing the plasmas of dense Z-pinches. IEEE Trans. Plasma Sci., 43, 2363(2015).

    [48] S. A. Pikuz, S. A. Pikuz, S. A. Pikuz et al. X-Pinch. III. Fiz. Plazmy, 42, 234(2016).

    [49] N. Ding et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM. Matter Radiat. Extremes, 1, 135(2016).

    N. R. Pereira. Whence Z-pinches? A personal view[J]. Matter and Radiation at Extremes, 2020, 5(2): 26402
    Download Citation