• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1704002 (2022)
Yuchen Zhao, Hao Tian, Jianhua Dou, Yanning Yuan, and Xiaoli Xi*
Author Affiliations
  • College of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1704002 Cite this Article Set citation alerts
    Yuchen Zhao, Hao Tian, Jianhua Dou, Yanning Yuan, Xiaoli Xi. Optimal Design of Superconducting Nanowire Single-Photon Detector with High Light Absorptivity in Wavelength Range of 3-5 µm Based on Asymmetric Fabry-Pérot Cavity Structure[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1704002 Copy Citation Text show less
    References

    [1] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [2] Lin J X, Hu C Y, Wang P W et al. Improvement of photon-counting correlated imaging quality by multi-channel parallel detection[J]. Acta Optica Sinica, 39, 0511001(2019).

    [3] Liang X L, Jiang W H, Liu J H et al. A 1.25 GHz InGaAs/InP single-photon detector for high-speed quantum cryptography[J]. Chinese Journal of Lasers, 39, 0818001(2012).

    [4] Guan Y Q, Yan Q R, Yang S T et al. Single-photon compressive imaging based on residual codec network[J]. Acta Optica Sinica, 40, 0111022(2020).

    [5] Chen J P, Zhang C, Liu Y et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 124, 070501(2020).

    [6] Zhang B, Chen Q, Guan Y Q et al. Research progress of photon response mechanism of superconducting nanowire single photon detector[J]. Acta Physica Sinica, 70, 198501(2021).

    [7] Zhang W Y, Hu P, Xiao Y et al. High-efficiency polarization-insensitive superconducting nanowire single photon detector[J]. Acta Physica Sinica, 70, 188501(2021).

    [8] Chen Q, Ge R, Zhang L B et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire[J]. Science Bulletin, 66, 965-968(2021).

    [9] Anant V, Kerman A J, Dauler E A et al. Optical properties of superconducting nanowire single-photon detectors[J]. Optics Express, 16, 10750-10761(2008).

    [10] Marsili F, Verma V B, Stern J A et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 7, 210-214(2013).

    [11] Chang J, Los J W N, Tenorio-Pearl J O et al. Detecting telecom single photons with 99.5-2.07+0.5% system detection efficiency and high time resolution[J]. APL Photonics, 6, 036114(2021).

    [12] Korneeva Y, Florya I, Semenov A et al. New generation of nanowire NbN superconducting single-photon detector for mid-infrared[J]. IEEE Transactions on Applied Superconductivity, 21, 323-326(2011).

    [13] Marsili F, Bellei F, Najafi F et al. Efficient single photon detection from 500 nm to 5 μm wavelength[J]. Nano Letters, 12, 4799-4804(2012).

    [14] Taylor G G, Morozov D, Gemmell N R et al. Photon counting LIDAR at 2.3 µm wavelength with superconducting nanowires[J]. Optics Express, 27, 38147-38158(2019).

    [15] Hu X L, Dauler E A, Molnar R J et al. Superconducting nanowire single-photon detectors integrated with optical nano-antennae[J]. Optics Express, 19, 17-31(2011).

    [16] Zheng F, Xu R Y, Chen Y J et al. Design of a superconducting nanowire single-photon detector with dual-broadband and high detection efficiency[J]. IEEE Photonics Journal, 9, 4502108(2017).

    [17] Vetter A, Ferrari S, Rath P et al. Cavity-enhanced and ultrafast superconducting single-photon detectors[J]. Nano Letters, 16, 7085-7092(2016).

    [18] Yamashita T, Waki K, Miki S et al. Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers[J]. Scientific Reports, 6, 35240(2016).

    [19] Zheng F, Xu R Y, Zhu G H et al. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency[J]. Scientific Reports, 6, 22710(2016).

    [20] Redaelli L, Zwiller V, Monroy E et al. Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics[J]. Superconductor Science and Technology, 30, 035005(2017).

    [21] Chi X M, Zou K, Gu C et al. Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity[J]. Optics Letters, 43, 5017-5020(2018).

    [22] Hu X L, Holzwarth C W, Masciarelli D et al. Efficiently coupling light to superconducting nanowire single-photon detectors[J]. IEEE Transactions on Applied Superconductivity, 19, 336-340(2009).

    [23] Verma V B, Korzh B, Walter A B et al. Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors[J]. APL Photonics, 6, 056101(2021).

    [24] Wollman E E, Verma V B, Walter A B et al. Recent advances in superconducting nanowire single-photon detector technology for exoplanet transit spectroscopy in the mid-infrared[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 011004(2021).

    [25] Zhao Y C, Zhao B Y, Zheng J H et al. Design of superconducting nanowire single-photon detector with broadband light absorption characteristics in 3-5 μm[J]. Laser & Optoelectronics Progress, 59, 0104001(2022).

    [26] Erotokritou K, Heath R M, Taylor G G et al. Nano-optical photoresponse mapping of superconducting nanowires with enhanced near infrared absorption[J]. Superconductor Science and Technology, 31, 125012(2018).

    [27] Li D Z, Jiao R Z. Design of a low-filling-factor and polarization-sensitive superconducting nanowire single photon detector with high detection efficiency[J]. Photonics Research, 7, 847-852(2019).

    [28] Huang Z C. Studies of long-wavelength vertical-cavity surface-emitting laser materials and physics[D], 25(2006).

    [29] Xiao Q L, Hu G H, He H B et al. Evolution of residual stress and structure in YSZ/SiO2 multilayers with different modulation ratios[J]. Chinese Physics Letters, 30, 024206(2013).

    Yuchen Zhao, Hao Tian, Jianhua Dou, Yanning Yuan, Xiaoli Xi. Optimal Design of Superconducting Nanowire Single-Photon Detector with High Light Absorptivity in Wavelength Range of 3-5 µm Based on Asymmetric Fabry-Pérot Cavity Structure[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1704002
    Download Citation