• Photonics Research
  • Vol. 12, Issue 1, 172 (2024)
Shengyang Wu1、2, Benli Yu1、2, and Lei Zhang1、2、*
Author Affiliations
  • 1Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, Anhui University, Hefei 230601, China
  • 2Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
  • show less
    DOI: 10.1364/PRJ.498502 Cite this Article Set citation alerts
    Shengyang Wu, Benli Yu, Lei Zhang. Mutual aid instead of mutual restraint: interactive probing for topological charge and phase of a vortex beam of large aberrations[J]. Photonics Research, 2024, 12(1): 172 Copy Citation Text show less
    References

    [1] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [2] N. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [3] M. Eshaghi, C. H. Acevedo, M. Batarseh. Phase memory of optical vortex beams. Sci. Rep., 12, 10428(2022).

    [4] J. M. Hickmann, E. J. Fonseca, W. C. Soares. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).

    [5] Q. S. Ferreira, A. J. Jesus-Silva, E. J. S. Fonseca. Fraunhofer diffraction of light with orbital angular momentum by a slit. Opt. Lett., 36, 3106-3108(2011).

    [6] J. G. Silva, A. J. Jesus-Silva, M. A. Alencar. Unveiling square and triangular optical lattices: a comparative study. Opt. Lett., 39, 949-952(2014).

    [7] S. Zheng, J. Wang. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep., 7, 40781(2017).

    [8] A. M. Dezfouli, D. Abramović, M. Rakić. Detection of the orbital angular momentum state of light using sinusoidally shaped phase grating. Appl. Phys. Lett., 120, 191106(2022).

    [9] B. Pinheiro da Silva, G. H. dos Santos, A. G. de Oliveira. Observation of a triangular-lattice pattern in nonlinear wave mixing with optical vortices. Optica, 9, 908-912(2022).

    [10] C. Guo, S. Yue, G. Wei. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Appl. Phys. Lett., 94, 231104(2009).

    [11] D. Fu, D. Chen, R. Liu. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt. Lett., 40, 788-791(2015).

    [12] P. Li, B. Wang, X. Song. Non-destructive identification of twisted light. Opt. Lett., 41, 1574-1577(2016).

    [13] J. Zhu, P. Zhang, D. Fu. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photonics Res., 4, 187-190(2016).

    [14] B. Khajavi, E. J. Galvez. Determining topological charge of an optical beam using a wedged optical flat. Opt. Lett., 42, 1516-1519(2017).

    [15] S. Cui, B. Xu, S. Luo. Determining topological charge based on an improved Fizeau interferometer. Opt. Express, 27, 12774-12779(2019).

    [16] G. Verma, G. Yadav. Compact picometer-scale interferometer using twisted light. Opt. Lett., 44, 3594-3597(2019).

    [17] Q. Zhao, M. Dong, Y. Bai. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer. Photonics Res., 8, 745-749(2020).

    [18] P. Kumar, N. K. Nishchal. Self-referenced spiral interferogram using modified lateral shearing Mach-Zehnder interferometer. Appl. Opt., 58, 6827-6833(2019).

    [19] G. C. Berkhout, M. P. Lavery, J. Courtial. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [20] Y. Wen, I. Chremmos, Y. Chen. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [21] P. Wang, W. Xiong, Z. Huang. Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Res., 9, 2116-2124(2021).

    [22] J. Li, M. Zhang, D. Wang. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt. Express, 26, 10494-10508(2018).

    [23] Z. Wang, M. I. Dedo, K. Guo. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network. IEEE Photonics J., 11, 7903614(2019).

    [24] H. Huang, Y. Ren, Y. Yan. Phase-shift interference-based wavefront characterization for orbital angular momentum modes. Opt. Lett., 38, 2348-2350(2013).

    [25] Z. Zhang, F. Dong, K. Qian. Real-time phase measurement of optical vortices based on pixelated micropolarizer array. Opt. Express, 23, 20521-20528(2015).

    [26] J. Guo, S. Zheng, K. Zhou. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer. Appl. Phys. Lett., 119, 023504(2021).

    [27] T. Ling, D. Liu, Y. Yang. Off-axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront. Opt. Lett., 38, 2493-2495(2013).

    [28] T. M. Jeong, D. K. Ko, J. Lee. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers. Opt. Lett., 32, 232-234(2007).

    [29] D. Li. Simple algorithms of wavefront reconstruction for cyclic radial shearing interferometer. Opt. Eng., 41, 1893(2002).

    [30] L. Zhang, J. Cao, S. Wu. From concept to reality: computing visual vortex beam interferometer for displacement measurement. Opt. Lett., 47, 5449-5452(2022).

    [31] D. Liu, Y. Yang, L. Wang. Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer. Appl. Opt., 46, 8305-8314(2007).

    [32] S. Fu, C. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photonics Res., 4, B1-B4(2016).

    [33] S. Fu, T. Wang, S. Zhang. Non-probe compensation of optical vortices carrying orbital angular momentum. Photonics Res., 5, 251-255(2017).

    Shengyang Wu, Benli Yu, Lei Zhang. Mutual aid instead of mutual restraint: interactive probing for topological charge and phase of a vortex beam of large aberrations[J]. Photonics Research, 2024, 12(1): 172
    Download Citation