• Opto-Electronic Engineering
  • Vol. 47, Issue 8, 190551 (2020)
Xi Xinghua1、*, Zhang Chaojie1, Hu Haifei2、3, and Guan Yingjun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190551 Cite this Article
    Xi Xinghua, Zhang Chaojie, Hu Haifei, Guan Yingjun. Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror[J]. Opto-Electronic Engineering, 2020, 47(8): 190551 Copy Citation Text show less
    References

    [1] Zhang L, Ye L, Zhang J P, et al. Gravity and support error separation of 1.2 m lightweight space mirror[J]. Acta Photonica Sinica, 2018, 47(7): 0722002.

    [2] Liu M, Zhang L Z, Li X, et al. Design of flexure support of space compact reflector subassembly and dynamic analysis[J]. Opto-Electronic Engineering, 2018, 45(5): 170686.

    [3] Hu H F, Luo X, Xin HW, et al. Layout optimization of equal-force supports for ultra-large optical fabrication[J]. Acta Optica Sinica, 2014, 34(4): 0422003.

    [4] Guo P, Zhang J X, Yang F, et al. Optimization of TMT M3 prototype’s support points[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112205.

    [5] Dai X L. Study on the active control technology of a thin primary mirror[D]. Beijing: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2018.

    [6] Li H Z, Zhang Z D,Wang JL, et al. Active surface-profile correction of 620 mm thin-mirror based on flotation support[J]. Acta Optica Sinica, 2013, 33(5): 0511001.

    [7] Zhu Y, Chen T, Wang J L, et al. Active correction of 1.23 m SiC mirror using bending mode[J]. Optics and Precision Engineering, 2017, 25(10): 2551–2563.

    [8] Lan B,Wu X X,Li J F, et al. Influence of axial-force errors on the deformation of the 4 m lightweight mirror and its correction[J]. Applied Optics, 2017, 56(3): 611–619.

    [9] Hu H F, Luo X, Liu Z Y, et al. Designing a hydraulic support system for large monolithic mirror’s precise in-situ testing-polishing iteration[J]. Optics Express, 2019, 27(3): 3746–3760.

    [10] Chen F L, Zhang J X,Wu X X, et al. Deformation of thin primary mirror fitted with its vibration mode[J]. Infrared and Laser Engineering, 2011, 40(11): 2238–2243.

    [11] Noethe L. Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors[J]. Journal of Modern Optics, 1991, 38(6): 1043–1066.

    [12] Fan L, Qiao B, Wang F G. Calibration of moment correction for thin mirror surface based on free harmonic vibration modal[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(3): 9–13.

    [13] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflections on point supports[J]. Proceedings of SPIE, 1982, 332(12): 212–228.

    [14] Hu H F, Zhao HW, Liu Z Y, et al. Hydrostatic support system for in-situ optical testing of a 4 m aperture SiC mirror[J]. Optics and Precision Engineering, 2017, 25(10): 2607–2613.

    [15] Wang F G, Li H Z, Yang F. Ability of the thin mirror active optics to correct optical astigmatio[J]. Acta Photonica Sinica, 2010, 39(5): 871–875.

    Xi Xinghua, Zhang Chaojie, Hu Haifei, Guan Yingjun. Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror[J]. Opto-Electronic Engineering, 2020, 47(8): 190551
    Download Citation