• Photonics Research
  • Vol. 7, Issue 5, 594 (2019)
Yue-De Yang1、2, Min Tang1、2, Fu-Li Wang1、2, Zhi-Xiong Xiao1、2, Jin-Long Xiao1、2, and Yong-Zhen Huang1、2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.7.000594 Cite this Article Set citation alerts
    Yue-De Yang, Min Tang, Fu-Li Wang, Zhi-Xiong Xiao, Jin-Long Xiao, Yong-Zhen Huang. Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited][J]. Photonics Research, 2019, 7(5): 594 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] J. Ward, O. Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photon. Rev., 5, 553-570(2011).

    [3] L. N. He, S. K. Ozdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photon. Rev., 7, 60-82(2013).

    [4] V. D. Ta, R. Chen, L. Ma, Y. J. Ying, H. D. Sun. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photon. Rev., 7, 133-139(2013).

    [5] J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, Y. F. Mei. Optical microcavities with tubular geometry: properties and applications. Laser Photon. Rev., 8, 521-547(2014).

    [6] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [7] X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, Y. F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 10, 40-61(2016).

    [8] X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Loncar, L. Yang, Y. F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [9] J. W. Strutt, B. Rayleigh. The problem of the whispering gallery. Phil. Mag., 20, 1001-1004(1910).

    [10] S. L. Mccall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett., 60, 289-291(1992).

    [11] A. F. J. Levi, R. E. Slusher, S. L. Mccall, S. J. Pearton, W. S. Hobson. Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser-diodes. Appl. Phys. Lett., 62, 2021-2023(1993).

    [12] M. Cai, O. Painter, K. J. Vahala, P. C. Sercel. Fiber-coupled microsphere laser. Opt. Lett., 25, 1430-1432(2000).

    [13] S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus. Microdisk lasers vertically coupled to output waveguides. IEEE Photon. Technol. Lett., 15, 1330-1332(2003).

    [14] L. Yang, D. K. Armani, K. J. Vahala. Fiber-coupled erbium microlasers on a chip. Appl. Phys. Lett., 83, 825-826(2003).

    [15] E. P. Ostby, L. Yang, K. J. Vahala. Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process. Opt. Lett., 32, 2650-2652(2007).

    [16] H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nat. Photonics, 1, 232-237(2007).

    [17] A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, E. L. Hu. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat. Photonics, 1, 61-64(2007).

    [18] Y. D. Yang, Y. Z. Huang, Q. Chen. High-Q TM whispering-gallery modes in three-dimensional microcylinders. Phys. Rev. A, 75, 013817(2007).

    [19] Y. Z. Huang, Y. D. Yang. Mode coupling and vertical radiation loss for whispering-gallery modes in 3-D microcavities. J. Lightwave Technol., 26, 1411-1416(2008).

    [20] H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia. Whispering gallery mode lasing in electrically driven quantum dot micropillars. Appl. Phys. Lett., 97, 101108(2010).

    [21] Y. D. Yang, Y. Z. Huang, W. H. Guo, Q. Y. Lu, J. F. Donegan. Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators. Opt. Express, 18, 13057-13062(2010).

    [22] Y. D. Yang, S. J. Wang, Y. Z. Huang. Investigation of mode radiation loss for microdisk resonators with pedestals by FDTD technique. Chin. Opt. Lett., 8, 502-504(2010).

    [23] J. K. Kitur, V. A. Podolskiy, M. A. Noginov. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Phys. Rev. Lett., 106, 183903(2011).

    [24] J. S. Levy, M. A. Foster, A. L. Gaeta, M. Lipson. Harmonic generation in silicon nitride ring resonators. Opt. Express, 19, 11415-11421(2011).

    [25] Y. D. Yang, Y. Z. Huang. Investigation of vertical leakage loss for whispering-gallery modes in microcylinder resonators. J. Lightwave Technol., 29, 2754-2760(2011).

    [26] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [27] R. Chen, V. D. Ta, H. D. Sun. Single mode lasing from hybrid hemispherical microresonators. Sci. Rep., 2, 244(2012).

    [28] M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, S. Reitzenstein. Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Appl. Phys. Lett., 100, 031111(2012).

    [29] J. T. Lin, Y. X. Xu, J. X. Song, B. Zeng, F. He, H. L. Xu, K. Sugioka, W. Fang, Y. Cheng. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Opt. Lett., 38, 1458-1460(2013).

    [30] S. Mehrabani, A. M. Armani. Blue upconversion laser based on thulium-doped silica microcavity. Opt. Lett., 38, 4346-4349(2013).

    [31] L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, Y. Du. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photon. Res., 2, 177-181(2014).

    [32] Y. D. Yang, J. L. Xiao, B. W. Liu, Y. Z. Huang. Mode characteristics and vertical radiation loss for AlGaInAs/InP microcylinder lasers. J. Opt. Soc. Am. B, 32, 439-444(2015).

    [33] Y. D. Yang, H. Z. Weng, B. W. Liu, J. L. Xiao, Y. Z. Huang. Localized-cavity-loss-induced external mode coupling in optical microresonators. J. Opt. Soc. Am. B, 32, 2376-2381(2015).

    [34] S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, Y. Z. Huang. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon. Res., 3, 289-295(2015).

    [35] S. Longhi, L. Feng. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photon. Res., 5, B1-B6(2017).

    [36] X. C. Chen, C. S. Fenrich, M. Y. Xue, M. Y. Kao, K. Zang, C. Y. Lu, E. T. Fei, Y. S. Chen, Y. J. Huo, T. I. Kamins, J. S. Harris. Tensile-strained Ge/SiGe multiple quantum well microdisks. Photon. Res., 5, B7-B14(2017).

    [37] J. Y. Ma, X. S. Jiang, M. Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates. Photon. Res., 5, B54-B58(2017).

    [38] J. U. Nockel, A. D. Stone, G. Chen, H. L. Grossman, R. K. Chang. Directional emission from asymmetric resonant cavities. Opt. Lett., 21, 1609-1611(1996).

    [39] J. U. Nockel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 385, 45-47(1997).

    [40] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho. High-power directional emission from microlasers with chaotic resonators. Science, 280, 1556-1564(1998).

    [41] Y. Baryshnikov, P. Heider, W. Parz, V. Zharnitsky. Whispering gallery modes inside asymmetric resonant cavities. Phys. Rev. Lett., 93, 133902(2004).

    [42] S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D. J. Shin, Y. H. Lee. Highly directional emission from few-micron-size elliptical microdisks. Appl. Phys. Lett., 84, 861-863(2004).

    [43] X. F. Jiang, Y. F. Xiao, Q. F. Yang, L. B. Shao, W. R. Clements, Q. H. Gong. Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity. Appl. Phys. Lett., 103, 101102(2013).

    [44] Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, Q. H. Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Appl. Phys. Lett., 102, 221108(2013).

    [45] L. B. Shao, L. Wang, W. J. Xiong, X. F. Jiang, Q. F. Yang, Y. F. Xiao. Ultrahigh-Q, largely deformed microcavities coupled by a free-space laser beam. Appl. Phys. Lett., 103, 121102(2013).

    [46] L. Wang, D. Lippolis, Z. Y. Li, X. F. Jiang, Q. H. Gong, Y. F. Xiao. Statistics of chaotic resonances in an optical microcavity. Phys. Rev. E, 93, 040201(2016).

    [47] J. W. Wang, Y. Yin, Q. Hao, S. Z. Huang, E. S. G. Naz, O. G. Schmidt, L. B. Ma. External strain enabled post-modification of nanomembrane-based optical microtube cavities. ACS Photon., 5, 2060-2067(2018).

    [48] J. W. Wang, Y. Yin, Q. Hao, Y. D. Yang, S. Valligatla, E. S. G. Naz, Y. Li, C. N. Saggau, L. B. Ma, O. G. Schmidt. Curved nanomembrane-based concentric ring cavities for supermode hybridization. Nano Lett., 18, 7261-7267(2018).

    [49] G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, N. M. Johnson. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett., 83, 1710-1712(2003).

    [50] C. M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, J. H. Kim. Continuous wave operation of a spiral-shaped microcavity laser. Appl. Phys. Lett., 92, 131110(2008).

    [51] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 100, 033901(2008).

    [52] Q. H. Song, W. Fang, B. Y. Liu, S. T. Ho, G. S. Solomon, H. Cao. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A, 80, 041807(2009).

    [53] Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J. B. Shim, J. Unterhinninghofen, W. Fang, G. S. Solomon. Directional laser emission from a wavelength-scale chaotic microcavity. Phys. Rev. Lett., 105, 130902(2010).

    [54] X. F. Jiang, Y. F. Xiao, C. L. Zou, L. N. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, Q. H. Gong. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater., 24, OP260-OP264(2012).

    [55] Y. D. Yang, Y. Zhang, Y. Z. Huang, A. W. Poon. Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects. Opt. Express, 22, 824-838(2014).

    [56] Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. B. Shi, Y. Li, Q. H. Gong. Tunneling-induced transparency in a chaotic microcavity. Laser Photon. Rev., 7, L51-L54(2013).

    [57] Q. F. Yang, X. F. Jiang, Y. L. Cui, L. B. Shao, Y. F. Xiao. Dynamical tunneling-assisted coupling of high-Q deformed microcavities using a free-space beam. Phys. Rev. A, 88, 023810(2013).

    [58] Y. C. Liu, Y. F. Xiao, X. F. Jiang, B. B. Li, Y. Li, Q. H. Gong. Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities. Phys. Rev. A, 85, 013843(2012).

    [59] F. J. Shu, X. F. Jiang, G. M. Zhao, L. Yang. A scatterer-assisted whispering-gallery-mode microprobe. Nanophotonics, 7, 1455-1460(2018).

    [60] H. C. Chang, G. Kioseoglou, E. H. Lee, J. Haetty, M. H. Na, Y. Xuan, H. Luo, A. Petrou, A. N. Cartwright. Lasing modes in equilateral-triangular laser cavities. Phys. Rev. A, 62, 013813(2000).

    [61] Y. Z. Huang, W. H. Guo, Q. M. Wang. Influence of output waveguide on mode quality factor in semiconductor microlasers with an equilateral triangle resonator. Appl. Phys. Lett., 77, 3511-3513(2000).

    [62] A. W. Poon, F. Courvoisier, R. K. Chang. Multimode resonances in square-shaped optical microcavities. Opt. Lett., 26, 632-634(2001).

    [63] J. Wiersig. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A, 67, 023807(2003).

    [64] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann. Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. Phys. Rev. Lett., 93, 103903(2004).

    [65] N. Ma, C. Li, A. W. Poon. Laterally coupled hexagonal micropillar resonator add–drop filters in silicon nitride. IEEE Photon. Technol. Lett., 16, 2487-2489(2004).

    [66] S. V. Boriskina, T. M. Benson, P. Sewell, A. I. Nosich. Optical modes in 2-D imperfect square and triangular microcavities. IEEE J. Quantum Electron., 41, 857-862(2005).

    [67] G. M. Wysin. Electromagnetic modes in dielectric equilateral triangle resonators. J. Opt. Soc. Am. B, 23, 1586-1599(2006).

    [68] Y. D. Yang, Y. Z. Huang, S. J. Wang. Mode analysis for equilateral-triangle-resonator microlasers with metal confinement layers. IEEE J. Quantum Electron., 45, 1529-1536(2009).

    [69] C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, Z. L. Shi. Whispering-gallery mode lasing in ZnO microcavities. Laser Photon. Rev., 8, 469-494(2014).

    [70] Y. D. Yang, Y. Z. Huang. Mode characteristics and directional emission for square microcavity lasers. J. Phys. D, 49, 253001(2016).

    [71] H. Z. Weng, Y. D. Yang, J. L. Xiao, Y. Z. Hao, Y. Z. Huang. Spectral engineering for circular-side square microlasers. Opt. Express, 26, 9409-9414(2018).

    [72] F. L. Wang, Y. D. Yang, Y. Z. Huang, Z. X. Xiao, J. L. Xiao. Single-transverse-mode waveguide-coupled deformed hexagonal resonator microlasers. Appl. Opt., 57, 7242-7248(2018).

    [73] Y. D. Yang, Y. Z. Huang. Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys. Rev. A, 76, 023822(2007).

    [74] P. J. Richens, M. V. Berry. Pseudointegrable systems in classical and quantum-mechanics. Physica D, 2, 495-512(1981).

    [75] M. Tang, Y. D. Yang, H. Z. Weng, J. L. Xiao, Y. Z. Huang. Ray dynamics and wave chaos in circular-side polygonal microcavities. Phys. Rev. A, 99, 033814(2019).

    [76] M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny. Inferring periodic orbits from spectra of simply shaped microlasers. Phys. Rev. A, 76, 023830(2007).

    [77] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang. Room-temperature ultraviolet nanowire nanolasers. Science, 292, 1897-1899(2001).

    [78] C. Kim, Y. J. Kim, E. S. Jang, G. C. Yi, H. H. Kim. Whispering-gallery-mode like-enhanced emission from ZnO nanodisk. Appl. Phys. Lett., 88, 093104(2006).

    [79] C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Q. Cao, M. Lorenz, M. Grundmann. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett., 92, 241102(2008).

    [80] D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, P. D. Yang. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks. ACS Nano, 4, 3270-3276(2010).

    [81] C. Tessarek, G. Sarau, M. Kiometzis, S. Christiansen. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy. Opt. Express, 21, 2733-2740(2013).

    [82] C. Tessarek, R. Roder, T. Michalsky, S. Geburt, H. Franke, R. Schmidt-Grund, M. Heilmann, B. Hoffmann, C. Ronning, M. Grundmann, S. Christiansen. Improving the optical properties of self-catalyzed GaN microrods toward whispering gallery mode lasing. ACS Photon., 1, 990-997(2014).

    [83] D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, Y. Tzeng. Lasing in whispering gallery mode in ZnO nanonails. J. Appl. Phys., 99, 093112(2006).

    [84] J. Dai, C. X. Xu, K. Zheng, C. G. Lv, Y. P. Cui. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett., 95, 241110(2009).

    [85] G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, Y. P. Cui. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett., 94, 051106(2009).

    [86] R. Chen, B. Ling, X. W. Sun, H. D. Sun. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater., 23, 2199-2204(2011).

    [87] T. Kouno, K. Kishino, M. Sakai. Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy. IEEE J. Quantum Electron., 47, 1565-1570(2011).

    [88] S. J. Wang, Y. D. Yang, Y. Z. Huang. Analysis of mode characteristics for equilateral-polygonal resonators with a center hole. J. Opt. Soc. Am. B, 26, 2449-2454(2009).

    [89] J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, X. M. Lv, J. L. Xiao, Y. Du. Single transverse whispering-gallery mode AlGaInAs/InP hexagonal resonator microlasers. IEEE Photon. J., 3, 756-764(2011).

    [90] H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, H. B. Sun. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. Laser Photon. Rev., 7, 281-288(2013).

    [91] Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, X. W. Ma. Single-mode unidirectional-emission circular-side hexagonal resonator microlasers. Opt. Lett., 42, 1309-1312(2017).

    [92] Y. D. Yang, H. Z. Weng, Y. Z. Hao, J. L. Xiao, Y. Z. Huang. Square microcavity semiconductor lasers. Chin. Phys. B, 27, 114212(2018).

    [93] T. Akasaka, Y. Kobayashi, S. Ando, N. Kobayashi. GaN hexagonal microprisms with smooth vertical facets fabricated by selective metalorganic vapor phase epitaxy. Appl. Phys. Lett., 71, 2196-2198(1997).

    [94] Q. H. Song, L. Ge, J. Wiersig, H. Cao. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes. Phys. Rev. A, 88, 023834(2013).

    [95] T. Kouno, M. Sakai, K. Kishino, K. Hara. Optical microresonant modes acting in thin hexagonal GaN microdisk. Jpn. J. Appl. Phys., 53, 072001(2014).

    [96] Z. Y. Gu, K. Y. Wang, W. Z. Sun, S. Liu, N. Zhang, S. M. Xiao, Q. H. Song. Triangular lasing modes in hexagonal perovskite microplates with balanced gain and loss. RSC Adv., 6, 64589-64594(2016).

    [97] Y. Z. Huang, Q. Chen, W. H. Guo, Q. Y. Lu, L. J. Yu. Mode characteristics for equilateral triangle optical resonators. IEEE J. Sel. Top. Quantum Electron., 12, 59-65(2006).

    [98] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [99] Y. D. Yang, Y. Z. Huang. Mode analysis and Q-factor enhancement due to mode coupling in rectangular resonators. IEEE J. Quantum Electron., 43, 497-502(2007).

    [100] T. Nobis, M. Grundmann. Low-order optical whispering-gallery modes in hexagonal nanocavities. Phys. Rev. A, 72, 063806(2005).

    [101] S. Ando, N. Kobayashi, H. Ando. Novel hexagonal-facet GaAs/AlGaAs laser grown by selective-area metalorganic chemical-vapor-deposition. Jpn. J. Appl. Phys., 32, L1293-L1296(1993).

    [102] U. Vietze, O. Krauss, F. Laeri, G. Ihlein, F. Schuth, B. Limburg, M. Abraham. Zeolite-dye microlasers. Phys. Rev. Lett., 81, 4628-4631(1998).

    [103] I. Braun, G. Ihlein, F. Laeri, J. U. Nockel, G. Schulz-Ekloff, F. Schuth, U. Vietze, O. Weiss. Hexagonal microlasers based on organic dyes in nanoporous crystals. Appl. Phys. B, 70, 335-343(2000).

    [104] H. J. He, E. Ma, Y. J. Cui, J. C. Yu, Y. Yang, T. Song, C. D. Wu, X. Y. Chen, B. L. Chen, G. D. Qian. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun., 7, 11087(2016).

    [105] R. Medishetty, J. K. Zareba, D. Mayer, M. Samoc, R. A. Fischer. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev., 46, 4976-5004(2017).

    [106] Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, Q. H. Xiong. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nano lasers. Nano Lett., 14, 5995-6001(2014).

    [107] X. F. Liu, S. T. Ha, Q. Zhang, M. de la Mata, C. Magen, J. Arbiol, T. C. Sum, Q. H. Xiong. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals. ACS Nano, 9, 687-695(2015).

    [108] J. Dai, C. X. Xu, X. W. Sun. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater., 23, 4115-4119(2011).

    [109] G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S. Tian, G. F. Chen. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array. Appl. Phys. Lett., 101, 041110(2012).

    [110] G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, C. X. Xu. Electro-pumped whispering gallery mode ZnO microlaser array. Appl. Phys. Lett., 106, 021111(2015).

    [111] Y. Y. Wang, C. X. Xu, M. M. Jiang, J. T. Li, J. Dai, J. F. Lu, P. L. Li. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale, 8, 16631-16639(2016).

    [112] Q. X. Zhu, F. F. Qin, J. F. Lu, Z. Zhu, H. Y. Nan, Z. L. Shi, Z. H. Ni, C. X. Xu. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res., 10, 1996-2004(2017).

    [113] C. X. Xu, F. F. Qin, Q. X. Zhu, J. F. Lu, Y. Y. Wang, J. T. Li, Y. Lin, Q. N. Cui, Z. L. Shi, A. G. Manohari. Plasmon-enhanced ZnO whispering-gallery mode lasing. Nano Res., 11, 3050-3064(2018).

    [114] J. Dai, C. X. Xu, X. W. Sun, X. H. Zhang. Exciton–polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities. Appl. Phys. Lett., 98, 161110(2011).

    [115] Q. Q. Duan, D. Xu, W. H. Liu, J. Lu, L. Zhang, J. Wang, Y. L. Wang, J. Gu, T. Hu, W. Xie, X. C. Shen, Z. H. Chen. Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Appl. Phys. Lett., 103, 022103(2013).

    [116] Y. Y. Lai, Y. P. Lan, T. C. Lu. Strong light–matter interaction in ZnO microcavities. Light: Sci. Appl., 2, e76(2013).

    [117] Y. Y. Lai, Y. H. Chou, Y. P. Lan, T. C. Lu, S. C. Wang, Y. Yamamoto. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity. Sci. Rep., 6, 20581(2016).

    [118] L. K. van Vugt, S. Ruhle, P. Ravindran, H. C. Gerritsen, L. Kuipers, D. Vanmaekelbergh. Exciton polaritons confined in a ZnO nanowire cavity. Phys. Rev. Lett., 97, 147401(2006).

    [119] L. X. Sun, Z. H. Chen, Q. J. Ren, K. Yu, L. H. Bai, W. H. Zhou, H. Xiong, Z. Q. Zhu, X. C. Shen. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys. Rev. Lett., 100, 156403(2008).

    [120] A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, L. Dang. One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature. Phys. Rev. B, 83, 041302(2011).

    [121] W. Xie, H. X. Dong, S. F. Zhang, L. X. Sun, W. H. Zhou, Y. J. Ling, J. Lu, X. C. Shen, Z. H. Chen. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett., 108, 166401(2012).

    [122] D. Xu, W. Xie, W. H. Liu, J. Wang, L. Zhang, Y. L. Wang, S. F. Zhang, L. X. Sun, X. C. Shen, Z. H. Chen. Polariton lasing in a ZnO microwire above 450 K. Appl. Phys. Lett., 104, 082101(2014).

    [123] S. F. Li, A. Waag. GaN based nanorods for solid state lighting. J. Appl. Phys., 111, 071101(2012).

    [124] C. Tessarek, M. Heilmann, S. Christiansen. Whispering gallery modes in GaN microdisks, microrods and nanorods grown by MOVPE. Phys. Status Solidi C, 11, 794-797(2014).

    [125] H. Baek, J. K. Hyun, K. Chung, H. Oh, G. C. Yi. Selective excitation of Fabry–Perot or whispering-gallery mode-type lasing in GaN microrods. Appl. Phys. Lett., 105, 201108(2014).

    [126] Y. Y. Zhang, X. H. Zhang, K. H. Li, Y. F. Cheung, C. Feng, H. W. Choi. Advances in III-nitride semiconductor microdisk lasers. Phys. Status Solidi A, 212, 960-973(2015).

    [127] M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, C. Chang-Hasnain. Core–shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. Opt. Express, 17, 7831-7836(2009).

    [128] R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain. Nanolasers grown on silicon. Nat. Photonics, 5, 170-175(2011).

    [129] T. Kouno, S. Suzuki, K. Kishino, M. Sakai, K. Yamano, A. Yanagihara, K. Hara. Optical properties of arrays of hexagonal GaN microdisks acting as whispering-gallery-mode-type optical microcavities. Phys. Status Solidi A, 212, 1017-1020(2015).

    [130] Y. D. Yang, S. J. Wang, Y. Z. Huang. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt. Express, 17, 23010-23015(2009).

    [131] Q. H. Song, L. Ge, B. Redding, H. Cao. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett., 108, 243902(2012).

    [132] H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, Y. Du. Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides. Phys. Rev. A, 95, 013833(2017).

    [133] M. Tang, Y. Z. Huang, Y. D. Yang, H. Z. Weng, Z. X. Xiao. Variable-curvature microresonators for dual-wavelength lasing. Photon. Res., 5, 695-701(2017).

    [134] H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, B. W. Liu. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett., 40, 3548-3551(2015).

    [135] J. L. Xiao, C. G. Ma, Z. X. Xiao, Y. D. Yang, Y. Z. Huang. Random bit generation in dual transverse mode microlaser without optical injection or feedback. IEEE International Semiconductor Laser Conference ISLC, 171-172(2018).

    CLP Journals

    [1] Menghan Liu, Peng Chen, Zili Xie, Xiangqian Xiu, Dunjun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, Youdou Zheng, Kai Cheng, Liyang Zhang. High-efficiency photon–electron coupling resonant emission in GaN-based microdisks on Si[J]. Chinese Physics B, 2020, 29(8):

    [2] Yan-Jun Qian, Qi-Tao Cao, Shuai Wan, Yu-Zhong Gu, Li-Kun Chen, Chun-Hua Dong, Qinghai Song, Qihuang Gong, Yun-Feng Xiao. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity[J]. Photonics Research, 2021, 9(3): 364

    Yue-De Yang, Min Tang, Fu-Li Wang, Zhi-Xiong Xiao, Jin-Long Xiao, Yong-Zhen Huang. Whispering-gallery mode hexagonal micro-/nanocavity lasers [Invited][J]. Photonics Research, 2019, 7(5): 594
    Download Citation