• Acta Optica Sinica
  • Vol. 37, Issue 3, 318009 (2017)
Cai Yanan*, Wang Zhaojun, Liang Yansheng, Yan Shaohui, Dan Dan, Yao Baoli, and Lei Ming
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0318009 Cite this Article Set citation alerts
    Cai Yanan, Wang Zhaojun, Liang Yansheng, Yan Shaohui, Dan Dan, Yao Baoli, Lei Ming. Optimization of the Doughnut-Shaped Depletion Spot in Stimulated Emission Depletion Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318009 Copy Citation Text show less
    References

    [1] Rayleigh L. On the theory of optical images, with special reference to the microscope[J]. Journal of the Royal Microscopical Society, 1903, 23(4): 474-482.

    [2] Conchello J A, Lichtman J W. Optical sectioning microscopy[J]. Nature Methods, 2005, 2(12): 920-931.

    [3] Wicker K, Sindbert S, Heintzmann R. Characterisation of a resolution enhancing image inversion interferometer[J]. Optics Express, 2009, 17(18): 15491-15501.

    [4] Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 993.

    [5] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. Journal of Cell Biology, 2010, 190(2): 165-175.

    [6] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14): 954-956.

    [7] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249.

    [8] Otomo K, Hibi T, Kozawa Y, et al. STED microscopy-super-resolution bio-imaging utilizing a stimulated emission depletion[J]. Microscopy, 2015: dfv036.

    [9] Dan D, Yao B, Lei M. Structured illumination microscopy for super-resolution and optical sectioning[J]. Chinese Science Bulletin, 2014, 59(12): 1291-1307.

    [10] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 2014, 114(6): 3189-3202.

    [11] Tam J, Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods[J]. Journal of Neurochemistry, 2015, 135(4): 643-658.

    [12] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. OpticsLetters, 1994, 19(11): 780-782.

    [13] Trk P, Munro P R T. The use of Gauss-Laguerre vector beams in STED microscopy[J]. Optics Express, 2004, 12(15): 3605-3617.

    [14] Singh R K, Senthilkumaran P, Singh K. Effect of primary coma on the focusing of a Laguerre-Gaussian beam by a high numerical aperture system; vectorial diffraction theory[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(7): 075008.

    [15] Singh R K, Senthilkumaran P, Singh K. Tight focusing of vortex beams in presence of primary astigmatism[J]. J Opt Soc Am A, 2009, 26(3): 576-588.

    [16] Hao X, Kuang C, Wang T, et al. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11): 115707.

    [17] Wolf E, Li Y. Conditions for the validity of the Debye integral representation of focused fields[J]. Optics Communications, 1981, 39(4): 205-210.

    [18] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

    [19] Kant R. An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: astigmatism and coma[J]. Journal of Modern Optics, 1995, 42(2): 299-320.

    [20] Helseth L E. Focusing of atoms with strongly confined light potentials[J]. Optics Communications, 2002, 212(4): 343-352.

    [21] Sato S, Kozawa Y. Hollow vortex beams[J]. J Opt Soc Am A, 2009, 26(1): 142-146.

    [22] Dorn R, Quabis S, Leuchs G. The focus of light-linear polarization breaks the rotational symmetry of the focal spot[J]. Journal of Modern Optics, 2003, 50(12): 1917-1926.

    [23] Iketaki Y, Watanabe T, Bokor N, et al. Investigation of the center intensity of first-and second-order Laguerre-Gaussian beams with linear and circular polarization[J]. Optics Letters, 2007, 32(16): 2357-2359.

    [24] Arigovindan M, Sedat J W, Agard D A. Effect of depth dependent spherical aberrations in 3D structured illumination microscopy[J]. Optics Express, 2012, 20(6): 6527-6541.

    [25] Singh R K, Senthilkumaran P, Singh K. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam[J]. J Opt Soc Am A, 2008, 25(6): 1307-1318.

    [26] Vickers J, Burch M, Vyas R, et al. Phase and interference properties of optical vortex beams[J]. J Opt Soc Am A, 2008, 25(3): 823-827.

    [27] Jun C, Deng-Feng K, Min G, et al. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching[J]. Chinese Physics Letters, 2009, 26(1): 014202.

    [28] Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators[J]. J Opt Soc Am A, 2008, 25(7): 1642-1651.

    [29] Nasse M J, Woehl J C, Huant S. High-resolution mapping of the three-dimensional point spread function in the near-focus region of a confocal microscope[J]. Applied Physics Letters, 2007, 90(3): 031106.

    [30] Cole R W, Jinadasa T, Brown C M. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control[J]. Nature Protocols, 2011, 6(12): 1929-1941.

    [31] Gibson S F, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy[J]. J Opt Soc Am A, 1992, 9: 154-166.

    [32] Sun B, Salter P S, Booth M J. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses[J]. J Opt Soc Am A, 2014, 30(4): 765-772.

    Cai Yanan, Wang Zhaojun, Liang Yansheng, Yan Shaohui, Dan Dan, Yao Baoli, Lei Ming. Optimization of the Doughnut-Shaped Depletion Spot in Stimulated Emission Depletion Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318009
    Download Citation