• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 294 (2019)
Zhou LI1, Chong XIAO2, [in Chinese]1, and [in Chinese]2
Author Affiliations
  • 11. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
  • 22. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.15541/jim20180303 Cite this Article
    Zhou LI, Chong XIAO, [in Chinese], [in Chinese]. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach[J]. Journal of Inorganic Materials, 2019, 34(3): 294 Copy Citation Text show less
    References

    [1] S DRESSELHAUS·M, L THOMAS I. Alternative energy technologies. Nature, 414, 332-337(2001).

    [2] A MAJUMDAR, S CHU. Opportunities and challenges for a sustainable energy future. Nature, 488, 294-303(2012).

    [3] C WOLFRAM, C ARMSTRONG R, K P DE JONG et al. The frontiers of energy. Nat. Energy, 1, 15020(2016).

    [4] J SCHMITT, G HAUTIER, G ZEIER W et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater., 1, 1-10(2016).

    [5] F FERNANDEZ J, A MOURE, M RULL-BRAVO et al. Skutterudites as thermoelectric materials: revisited. RSC Adv., 5, 41653-41667(2015).

    [6] R OVIK, D LONG B et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable Sustainable Energy Rev., 64, 635-659(2016).

    [7] Y CHUNG D, G KANATZIDIS·M, R SOOTSMAN J. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed., 48, 8616-8639(2009).

    [8] C XIAO, K LI, Z LI et al. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc. Chem. Res., 47, 1287-1295(2014).

    [9] J URBAN J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol., 10, 997-1001(2015).

    [10] M BEEKMAN, T MORELLI D, S NOLAS G. Better thermoelectrics through glass-like crystals. Nat. Mater., 14, 1182-1185(2015).

    [11] S TOBERER E, J SNYDER G. Complex thermoelectric materials. Nat. Mater., 7, 105-114(2008).

    [12] G KANATZIDIS·M, G TAN, D ZHAO L. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 116, 12123-12149(2016).

    [13] S DRESSELHAUS·M, D HICKS L. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 47, 12727-12731(1993).

    [14] Y MUNE, W KIM S, H OHTA et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater., 6, 129-134(2007).

    [15] H CHENG, Y SUN, S GAO et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc., 134, 20294-20297(2012).

    [16] D ZHAO L, Y LIU, Y LIU et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc., 133, 20112-20115(2011).

    [17] X ZHANG, C CHANG, Y ZHOU et al. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials, 10, 198(2017).

    [18] D ZHAO L, D BERARDAN, J HE et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci., 7, 2900-2924(2014).

    [19] J LI, Y PEI, J SUI et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci., 5, 8543-8547(2012).

    [20] S FAN, Z LI, C XIAO et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc., 137, 6587-6593(2015).

    [21] Y LIU, Y ZHU, D ZHAO L et al. Synergistically optimizing electrical. Synergistically optimizing electrical and thermal transport properties of BiCuSeO viaa dual- doping approach. Adv. Energy Mater., 6, 1-9(2016).

    [22] P HEREMANS J, S TOBERER E, V JOVOVIC et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554-557(2008).

    [23] C XIAO, J XU, B CAO et al. Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward “phonon glass electron crystal” thermoelectric materials. J. Am. Chem. Soc., 134, 7971-7977(2012).

    [24] J WU H, D ZHAO L, S ZHENG F et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun., 5, 4515-1-9(2014).

    [25] D ZHAO L, H WU, X ZHANG et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc., 138, 2366-2373(2016).

    [26] D MAHAN G, M BARTKOWIAK. Wiedemann-Franz law at boundaries. Appl. Phys. Lett., 74, 953-954(1999).

    [27] Y LIU, J DING, B XU et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett., 106, 1-5(2015).

    [28] X SHI, Y PEI, A LALONDE et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [29] A BANIK, S SHENOY U, S ANAND et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater., 27, 581-587(2015).

    [30] F SHI, S HAO, G TAN et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc., 137, 5100-5112(2015).

    Zhou LI, Chong XIAO, [in Chinese], [in Chinese]. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach[J]. Journal of Inorganic Materials, 2019, 34(3): 294
    Download Citation