• Opto-Electronic Engineering
  • Vol. 48, Issue 4, 200319 (2021)
Wang Junyao, Fan Junpeng, Shu Hao, Liu Chang, and Cheng Yongzhi*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200319 Cite this Article
    Wang Junyao, Fan Junpeng, Shu Hao, Liu Chang, Cheng Yongzhi. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electronic Engineering, 2021, 48(4): 200319 Copy Citation Text show less
    References

    [1] Zheludev N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582–583.

    [2] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 2012, 3: 1198.

    [3] Ni X J, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Sci Appl, 2013, 2(4): e72.

    [4] Wang W, Guo Z Y, Li R Z, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens[J]. Photonics Res, 2015, 3(3): 68–71.

    [5] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308–312.

    [6] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 2013, 13(2): 829–834.

    [7] Li R Z, Guo Z Y, Wang W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Res, 2015, 3(5): 252–255.

    [8] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [9] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807.

    [10] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2014, 4: 2808.

    [11] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102.

    [12] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

    [13] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

    [14] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307.

    [15] Fan J P, Cheng Y Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave[J]. J Phys D: Appl Phys, 2020, 53(2): 025109.

    [16] Cheng Y Z, Fan J P, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial[J]. IEEE Access, 2019, 8: 7615–7621.

    [17] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Appl Phys Lett, 2010, 96(25): 251104.

    [22] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669.

    [23] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294.

    [24] Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Opt Express, 2013, 21(6): 7614–7632.

    [25] Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nat Mater, 2009, 8(3): 235–242.

    [26] Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802.

    [27] Li Z B, Yao K, Xia F N, et al. Graphene plasmonic metasurfaces to steer infrared light[J]. Sci Rep, 2015, 5: 12423.

    [28] Yatooshi T, Ishikawa A, Tsuruta K. Terahertz wavefront control by tunable metasurface made of graphene ribbons[J]. Appl Phys Lett, 2015, 107(5): 053105.

    [29] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Adv Opt Mater, 2015, 3(12): 1744–1749.

    [30] Liu W G, Hu B, Huang Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Res, 2018, 6(7): 703–708.

    [31] Cao G Y, Gan X S, Lin H, et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electron Adv, 2018, 1(7): 180012.

    [32] Yang J, Wang Z, Wang F, et al. Atomically thin optical lenses and gratings[J]. Light: Sci Appl, 2016, 5(3): e16046.

    [34] Cai T, Wang G M, Xu H X, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Ann Phys, 2017, 530(1): 1700321.

    [35] Shi X, Han D Z, Dai Y Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Opt Express, 2013, 21(23): 28438–28443.

    [36] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Appl Phys Lett, 2013,103(20): 203112.

    [37] Fallahi A, Perruisseau-Carrier J. Manipulation of giant Faraday rotation in graphene metasurfaces[J]. Appl Phys Lett, 2012, 101(23): 231605.

    [38] Ding J, Arigong B, Ren H, et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Sci Rep, 2014, 4: 6128.

    [39] Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398.

    Wang Junyao, Fan Junpeng, Shu Hao, Liu Chang, Cheng Yongzhi. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electronic Engineering, 2021, 48(4): 200319
    Download Citation