• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 190005 (2019)
Ronghua Chi1、2、*, Yanping Zhou1, and Liya Li1
Author Affiliations
  • 1School of Internet of Things and Software Technology, Wuxi Vocational College of Science and Technology, Wuxi, Jiangsu 214028, China
  • 22 Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • show less
    DOI: 10.3788/LOP56.190005 Cite this Article Set citation alerts
    Ronghua Chi, Yanping Zhou, Liya Li. Research Status and Development Analysis of Multicore Fiber Amplifier[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190005 Copy Citation Text show less
    References

    [1] Essiambre R, Mecozzi A. Capacity limits in single mode fiber and scaling for spatial multiplexing. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, CA, USA. New York: IEEE, 12760867(2012).

    [2] Igarashi K, Tsuritani T, Morita I et al. Ultra-long-haul high-capacity super-Nyquist-WDM transmission experiment using multi-core fibers[J]. Journal of Lightwave Technology, 33, 1027-1036(2015). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-33-5-1027

    [3] Kobayashi T, Hiraga K, Yamada M et al. 2×344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation. [C]∥39th European Conference and Exhibition on Optical Communication (ECOC 2013), September 22-26, 2013, London, UK. New York: IEEE, 13842252(2013).

    [4] Zhu B, Taunay T F, Yan M F et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 18, 11117-11122(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11117

    [5] Zhu B Y. SDM fibers for data center applications. [C]∥2019 Optical Fiber Communication Conference (OFC), March 3-7, 2019, San Diego, CA, USA. New York: IEEE, 18632757(2019).

    [6] Mizuno T, Shibahara K, Lee D et al. Dense space division multiplexing (DSDM) long distance optical fiber transmission technology[J]. NTT Technical Review, 15, 1-7(2017).

    [7] Abedin K S, Taunay T F, Fishteyn M et al. Amplification and noise properties of an erbium-doped multicore fiber amplifier[J]. Optics Express, 19, 16715-16721(2011). http://www.ncbi.nlm.nih.gov/pubmed/21935033

    [8] Sakaguchi J, Klaus W, Puttnam B J et al. 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics[J]. Optics Express, 22, 90-95(2014). http://www.ncbi.nlm.nih.gov/pubmed/24514969

    [9] Jain S, Mizuno T, Jung Y et al. 32-core inline multicore fiber amplifier for dense space division multiplexed transmission systems. [C]∥42nd European Conference on Optical Communication, September 17-21, 2016, Dusseldorf, Germany. New York: IEEE, 1-3(2016).

    [10] Mimura Y, Tsuchida Y, Maeda K, Exhibition on Optical Communication et al. Amsterdam, Netherlands. Washington,. D.C.: OSA, 2012: Tu.4.F., 1(2012).

    [11] Abedin K S, Yan M F, Taunay T F et al. State-of-the-art multicore fiber amplifiers for space division multiplexing[J]. Optical Fiber Technology, 35, 64-71(2017). http://www.sciencedirect.com/science/article/pii/S1068520016301079

    [12] Ono H, Ichii K, Masuda H et al. 12-core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module. [C]∥39th European Conference and Exhibition on Optical Communication (ECOC 2013), September 22-26, 2013, London, UK. New York: IEEE, 13842030(2013).

    [13] Abedin K S, Fini J M, Thierry T F et al. Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber[J]. Optics Letters, 39, 993-996(2014). http://www.ncbi.nlm.nih.gov/pubmed/24562260

    [14] Theeg T, Sayinc H, Neumann J. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers[J]. Optic Express, 20, 28125-28141(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-27-28125

    [15] Tsuchida Y, Maeda K, Mimura Y et al. Amplification characteristics of a multi-core erbium-doped fiber amplifier. [C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, CA, USA. New York: IEEE, 13359822(2012).

    [16] Tsuchida Y, Maeda K, Watanabe K et al. Cladding pumped seven-core EDFA using an absorption-enhanced erbium doped fibre. [C]∥42nd European Conference on Optical Communication, September 18-22, 2016, Dusseldorf, Germany. New York: IEEE, 1-3(2016).

    [17] Takasaka S, Maeda K, Kawasaki K et al. Increase of cladding pump power efficiency by a 19-core erbium doped fibre amplifier. [C]∥2017 European Conference on Optical Communication (ECOC), September 17-21, 2017, Gothenburg, Sweden. New York: IEEE, 17733485(2017).

    [18] Takasaka S, Maeda K, Kawasaki K et al. Cladding pump recycling in 7-core EDFA. [C]∥2018 European Conference on Optical Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: IEEE, 18265371(2018).

    [19] Matsumoto K, Takeshita H, Maeda K et al. Experimental demonstration of 1480 nm cladding pumped multicore EDFA. [C]∥2018 European Conference on Optical Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: IEEE, 18265230(2018).

    [20] Fontaine N K, Lopez J E A, Chen H S et al. Los Angeles, CA, USA. New York: IEEE:, 16929827(2017).

    [21] Antonelli C, Golani O, Shtaif M et al. Nonlinear interference noise in space-division multiplexed transmission through optical fibers[J]. Optics Express, 25, 13055-13078(2017). http://www.ncbi.nlm.nih.gov/pubmed/28788845

    [22] Ryf R, Fontaine N K, Chang S H et al. Long-haul transmission over multi-core fibers with coupled cores. [C]∥2017 European Conference on Optical Communication (ECOC), September 17-21, 2017, Gothenburg, Sweden. New York: IEEE, 17733644(2017).

    [23] Wada M, Sakamoto T, Yamamoto T et al. Cladding pumped randomly coupled 12-core erbium-doped fiber amplifier with low mode-dependent gain[J]. Journal of Lightwave Technology, 36, 1220-1225(2018). http://ieeexplore.ieee.org/document/8269263/

    [24] Wada M, Sakamoto T, Aozasa S et al. L-band randomly-coupled 12 core erbium doped fiber amplifier. [C]∥Optical Fiber Communication Conference (OFC) 2019, March 3-7, 2019, San Diego, CA, USA. New York: IEEE, 18618713(2019).

    [25] Bigot L, Trinel J B, Bouwmans G et al. few-mode and multicore fiber amplifiers technology for SDM. [C]∥Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, CA, USA. Washington, D.C.: OSA, Tu3B, 2(2018).

    [26] Mukasa K, Imamura K, Sugizaki R. Multi-core few-mode optical fibers with large aeff. [C]∥38th European Conference and Exhibition on Optical Communications, September 16-20, 2012, Amsterdam, Netherlands. New York: IEEE, 14029037(2012).

    [27] Jin C, Huang B, Shang K P et al. Efficient annular cladding amplifier with six, three-mode cores. [C]∥2015 European Conference on Optical Communication(ECOC), September 27-October 1, 2015, Valencia, Spain. New York: IEEE, 15636193(2015).

    [28] Wada M, Sakamoto T, Aozasa S et al. Two-LP-mode six-core cladding pumped EDFA with high pump power density[J]. Journal of Lightwave Technology, 36, 331-335(2018). http://8.18.37.105/jlt/abstract.cfm?uri=jlt-36-2-331

    [29] Jung Y, Wada M, Sakamoto T et al. High spatial density 6-mode 7-core multicore L-band fiber amplifier. [C]∥Optical Fiber Communication Conference (OFC) 2019, March 3-7, 2019, San Diego, CA, USA. New York: IEEE, 18618486(2019).

    [30] Igarashi K, Soma D, Wakayama Y et al. Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers[J]. Optics Express, 24, 10213-10231(2016). http://www.ncbi.nlm.nih.gov/pubmed/27409847

    [31] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010). http://www.opticsinfobase.org/abstract.cfm?uri=josab-27-11-B63

    [32] Castro C, Jain S, Jung Y et al. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-core MCF system. [C]∥2017 Optical Fiber Communications Conference and Exhibition(OFC), March 19-23, 2017, Los Angeles, CA, USA. New York: IEEE, 16930104(2017).

    [33] Jain S, Castro C, Jung Y et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 25, 32887-32896(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-26-32887

    [34] Maeda K, Takasaka S, Sugizaki R et al[J]. Cladding pumped amplifier using seven-core EDF Furukawa Electric Review, 2017, 42-47.

    [35] Castro C. Jain S, de Man E, et al . 15×200 Gbit/s 16-QAM SDM transmission over an integrated 7-core cladding-pumped repeatered multicore link in a recirculating loop[J]. Journal of Lightwave Technology, 36, 349-354(2018).

    [36] Takara H, Ono H, Abe Y et al. 1000-km 7-core fiber transmission of 10×96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber[J]. Optics Express, 20, 10100-10105(2012). http://europepmc.org/abstract/MED/22535101

    [37] Masuda H, Ono H, Takara H et al. Remotely pumped multicore erbium-doped fiber amplifier system with high pumping efficiency. [C]∥2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE, 131-132(2013).

    [38] Mizuno T, Isoda A, Shibahara K et al. Hybrid cladding-pumped EDFA/Raman for SDM transmission systems using core-by-core gain control scheme. [C]∥2017 European Conference on Optical Communication (ECOC), September 17-21, 2017, Gothenburg, Sweden. New York: IEEE, 17749184(2017).

    [39] Mizuno T, Isoda A, Shibahara K et al. Hybrid cladding-pumped multicore EDFA/Raman amplification for space division multiplexing transmission systems[J]. Optics Express, 26, 13639-13646(2018). http://europepmc.org/abstract/MED/29801386

    [40] Puttnam B J, Rademacher G, Luís R S et al. 0.715 Pb/s transmission over 2009.6 km in 19-core cladding pumped EDFA amplified MCF link. [C]∥Optical Fiber Communication Conference, March 3-7, 2019, San Diego, CA, USA. New York: IEEE, 18618348(2019).

    [41] Sakaguchi J, Klaus W. Mendinueta J M D, et al . Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber[J]. Journal of Lightwave Technology, 34, 93-103(2016).

    [42] Trinel J B, Le Cocq G, Andresen E R et al. Latest results and future perspectives on few-mode erbium doped fiber amplifiers[J]. Optical Fiber Technology, 35, 56-63(2017). http://www.sciencedirect.com/science/article/pii/S1068520016300918

    [43] Yang F, Tang M, Li B R et al. Design and optimization of multi-core fibers with low crosstalk and large effective area[J]. Acta Optica Sinica, 34, 0106005(2014).

    [44] Liu Y H, Li J Y. Mode properties and progress of multi-core fiber lasers[J]. Laser & Optoelectronics Progress, 53, 050005(2016).

    Ronghua Chi, Yanping Zhou, Liya Li. Research Status and Development Analysis of Multicore Fiber Amplifier[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190005
    Download Citation