• Advanced Photonics Nexus
  • Vol. 2, Issue 6, 065001 (2023)
Hua-Ying Liu1、†,*, Yao Zhang1, Xiaoyi Liu1, Luyi Sun1, Pengfei Fan1, Xiaohui Tian1, Dong Pan2, Mo Yuan3, Zhijun Yin3, Guilu Long2, Shi-Ning Zhu1, and Zhenda Xie1、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Beijing Academy of Quantum Information Sciences, Beijing, China
  • 3Xin Lian Technology Co., Ltd., Huzhou, China
  • show less
    DOI: 10.1117/1.APN.2.6.065001 Cite this Article Set citation alerts
    Hua-Ying Liu, Yao Zhang, Xiaoyi Liu, Luyi Sun, Pengfei Fan, Xiaohui Tian, Dong Pan, Mo Yuan, Zhijun Yin, Guilu Long, Shi-Ning Zhu, Zhenda Xie. High-speed free-space optical communication using standard fiber communication components without optical amplification[J]. Advanced Photonics Nexus, 2023, 2(6): 065001 Copy Citation Text show less
    (a) Scheme of our FSO. (b) Picture of the 1 km experimental field. (c) Picture of the FSO devices. Alice is fixed in the building and Bob is loaded on an RCEV. (d) Diffraction loss of our FSO system. Red, diffraction loss only; blue, diffraction loss with loss of optics.
    Fig. 1. (a) Scheme of our FSO. (b) Picture of the 1 km experimental field. (c) Picture of the FSO devices. Alice is fixed in the building and Bob is loaded on an RCEV. (d) Diffraction loss of our FSO system. Red, diffraction loss only; blue, diffraction loss with loss of optics.
    (a) Design of FSO device. L, lens; IF, interference filter; DM, dichroic mirror; WDM, wavelength division multiplexer; TOSA, transmitter optical subassembly module; ROSA, receiver optical subassembly module; CMOS, complementary metal oxide semiconductor; BL, beacon laser; and FSM, fast steering mirror system (i=1,2). (b) Operation schematic of the APT system for acquisition, coarse tracking (left), and fine tracking (right).
    Fig. 2. (a) Design of FSO device. L, lens; IF, interference filter; DM, dichroic mirror; WDM, wavelength division multiplexer; TOSA, transmitter optical subassembly module; ROSA, receiver optical subassembly module; CMOS, complementary metal oxide semiconductor; BL, beacon laser; and FSM, fast steering mirror system (i=1,2). (b) Operation schematic of the APT system for acquisition, coarse tracking (left), and fine tracking (right).
    Performance of the APT system measured with 1 km separation. (a) Coarse tracking error. (b) Fine tracking error.
    Fig. 3. Performance of the APT system measured with 1 km separation. (a) Coarse tracking error. (b) Fine tracking error.
    (a) Link loss for 1 km FSO. (b) Picture of the optical transceiver modules. (c) Communication bandwidth measurement for the module test and FSO. Red, direct connection test; blue, 1 km FSO test.
    Fig. 4. (a) Link loss for 1 km FSO. (b) Picture of the optical transceiver modules. (c) Communication bandwidth measurement for the module test and FSO. Red, direct connection test; blue, 1 km FSO test.
    Link loss for 4 km FSO.
    Fig. 5. Link loss for 4 km FSO.
    Link typeWorking distanceTransmission data rateOptical amplificationOptical apertureWeightSizeOptical amplificationPower consumptionTracking errorLink lossReference
    Satellite-ground400,000 km622 Mbps (downlink)Yes100 mm (satellite) 4× 400 mm (ground)30 kgYes90  W10  μradRef. 13
    Airborne-ground50 km1.25 GbpsYes600 mm (ground)Yes20  μrad45 dB (20 km) 56 dB (40 km)Ref. 14
    Airship-ship20 km1.5 GbpsYes120 mmYes5  μradRef. 8
    Helicopter-helicopter17.5 km1.5 GbpsYes120 mmYes6.2  μradRef. 9
    Fixed-wing aircraft-fixed-wing aircraft136 to 144 km2.5 GbpsYes120 mmYes5.5  μrad58.3 dB
    Satellite-ground450 km50/100 MbpsYes400 mm (ground)2.3 kg (satellite)10  cm×10  cm×17  cm (satellite)Yes22 W(satellite)421  μradRef. 15
    UAV-ground7 km50 mm (UAV)8  kg358  μrad (azimuth)Ref. 16
    617  μrad (pitch)
    Fixed end-RCEV1 km9.16 GbpsNo90 mm9.5 kg45×40×35  cm3No10 W3  μrad13.7 dBOur work
    Table 1. Sample of performance of recent FSO systems.
    ComponentValue
    Coarse-tracking mechanismTypeThree-axis motorized
    Gimbal stage
    Tracking rangeAzimuth: ±90  deg
    Pitch: ±60  deg
    (With roll fixed)
    Coarse-tracking sensorTypeCMOS
    FOV0.04 rad * 0.04 rad
    Size and frame rate288 * 288 pixels and 1 kHz
    BL0Power1 W
    Wavelength940 nm
    Divergence35 mrad
    Fine-tracking mechanismTypeFSM
    Range±212  μrad
    Fine-tracking sensorTypeCMOS
    FOV13 mrad * 10 mrad
    Size and frame rate288 * 288 pixels and 1 kHz
    BL1Power5 mW
    Wavelength638 nm and 660 nm
    Divergence6 mrad
    BL2Power5 mW
    Wavelength808 nm and 852 nm
    Divergence6 mrad
    Table 2. Performance of the APT system.
    Hua-Ying Liu, Yao Zhang, Xiaoyi Liu, Luyi Sun, Pengfei Fan, Xiaohui Tian, Dong Pan, Mo Yuan, Zhijun Yin, Guilu Long, Shi-Ning Zhu, Zhenda Xie. High-speed free-space optical communication using standard fiber communication components without optical amplification[J]. Advanced Photonics Nexus, 2023, 2(6): 065001
    Download Citation