• Opto-Electronic Engineering
  • Vol. 46, Issue 2, 180137 (2019)
Li Lingxiao1、2、3、*, He Yi1、2, Wang Yuanyuan1、2、3, Wei Ling1、2, and Zhang Yudong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180137 Cite this Article
    Li Lingxiao, He Yi, Wang Yuanyuan, Wei Ling, Zhang Yudong. Adaptive optics scanning laser ophthalmoscopy with two sources[J]. Opto-Electronic Engineering, 2019, 46(2): 180137 Copy Citation Text show less
    References

    [1] Cathey W T Jr, Hayes C L, Davis W C, et al. Compensation for atmospheric phase effects at 10.6 μm[J]. Applied Optics, 1970, 9(3): 701–707.

    [2] Rao X, Li X, Jiang W. Small tabletop adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 2002, 4825: 99–108.

    [4] Gliss C, Parel J M, Flynn J T, et al. Toward a miniaturized fundus camera[J]. Journal of Biomedical Optics, 2004, 9(1): 126–131.

    [5] Huang D, Swanson E A, Lin C P, et al. Optical coherence to-mography[J]. Science, 1991, 254(5035): 1178–1181.

    [8] Sheppard C J R, Campos J, Escalera J C, et al. Two-zone pupil filters[J]. Optics Communications, 2008, 281(5): 913–922.

    [9] Sheppard C J R, Campos J, Escalera J C, et al. Three-zone pupil filters[J]. Optics Communications, 2008, 281(14): 3623–3630.

    [10] Sales T R M, Morris G M. Axial superresolution with phase-only pupil filters[J]. Optics Communications, 1998, 156(4–6): 227–230.

    [11] Gong W, Si K, Sheppard C J. Optimization of axial resolution in a confocal microscope with D-shaped apertures[J]. Applied Optics, 2009, 48(20): 3998–4002.

    [12] Ma Y, Kuang C F, Gong W, et al. Improvements of axial resolu-tion in confocal microscopy with fan-shaped apertures[J]. Ap-plied Optics, 2015, 54(6): 1354–1362.

    [13] Liang J Z, Williams D R. Aberrations and retinal image quality of the normal human eye[J]. Journal of the Optical Society of America A Optics, Image Science, and Vision, 1997, 14(11): 2873–2883.

    [14] Thibos L N, Ye M, Zhang X X, et al. The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans[J]. Applied Optics, 1992, 31(19): 3594–3600.

    [16] Wang J Y, Candy T R, Teel D F W, et al. Longitudinal chromatic aberration of the human infant eye[J]. Journal of the Optical Society of America A Optics, Image Science, and Vision, 2008, 25(9): 2263–2270.

    [17] Fernández E J, Artal P. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm[J]. Optics Express, 2008, 16(26): 21199–21208.

    [18] Manzanera S, Canovas C, Prieto P M, et al. A wavelength tunable wavefront sensor for the human eye[J]. Optics Express, 2008, 16(11): 7748–7755.

    [19] Marcos S, Burns S A, Moreno-Barriusop E, et al. A new ap-proach to the study of ocular chromatic aberrations[J]. Vision Research, 1999, 39(26): 4309–4323.

    [22] T.r.k P, Laczik Z, Sheppard C J. Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic con-focal microscopes[J]. Applied Optics, 1996, 35(34): 6732–6739.

    [23] Scoles D, Sulai Y N, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic[J]. Biomedical Optics Express, 2013, 4(9): 1710–1723.

    Li Lingxiao, He Yi, Wang Yuanyuan, Wei Ling, Zhang Yudong. Adaptive optics scanning laser ophthalmoscopy with two sources[J]. Opto-Electronic Engineering, 2019, 46(2): 180137
    Download Citation