• Photonics Research
  • Vol. 11, Issue 3, 373 (2023)
Lixin Jiang1、†, Qi Yuan1、†, Hao Yang1、†, Yongfeng Li1、3、*, Lin Zheng1, Zhibiao Zhu1, Shuang Liang1, Yongqiang Pang2, He Wang1、4、*, Jiafu Wang1, and Shaobo Qu1
Author Affiliations
  • 1Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Airforce Engineering University, Xi’an 710051, China
  • 2Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
  • 3e-mail: liyf217130@126.com
  • 4e-mail: 18066540235@163.com
  • show less
    DOI: 10.1364/PRJ.480979 Cite this Article Set citation alerts
    Lixin Jiang, Qi Yuan, Hao Yang, Yongfeng Li, Lin Zheng, Zhibiao Zhu, Shuang Liang, Yongqiang Pang, He Wang, Jiafu Wang, Shaobo Qu. Shape memory alloy-based 3D morphologically reconfigurable chiral metamaterial for tailoring circular dichroism by voltage control[J]. Photonics Research, 2023, 11(3): 373 Copy Citation Text show less
    References

    [1] D. S. Sanchez, I. Belopolski, T. A. Cochran, X. Xu, J. Yin, G. Chang, W. Xie, K. Manna, V. Süß, C. Huang, N. Alidoust, D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G. Wang, T. Chang, C. Felser, S. Xu, S. Jia, H. Lin, M. Z. Hasan. Topological chiral crystals with helicoid-arc quantum states. Nature, 567, 500-505(2019).

    [2] Y. Li, Y. Pang, J. Wang, Q. Zheng, J. Zhang, J. Zhang, Y. Jing, L. Zheng, M. Feng, H. Wang, S. Qu, T. Cui. Tailoring circular dichroism in an isomeric manner: complete control of amplitude and phase for high-quality hologram and beam forming. Adv. Opt. Mater., 10, 2101982(2021).

    [3] S. Yang, Z. Liu, S. Hu, A. Jin, H. Yang, S. Zhang, J. Li, C. Gu. Spin-selective transmission in chiral folded metasurfaces. Nano Lett., 19, 3432-3439(2019).

    [4] A. Karabchevsky. Single-shot circular dichroism spectroscopy. Light Sci. Appl., 11, 133(2022).

    [5] L. Jiang, Y. Li, L. Zheng, H. Chen, Q. Yuan, Z. Zhu, H. Wang, Y. Pang, J. Wang, S. Qu. Temperature-adaptive reconfigurable chiral metamaterial for tailoring circular dichroism based on shape memory alloy. Mater. Des., 225, 111496(2023).

    [6] S. Wang, Z. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. Guan, S. Xiao, X. Li. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl., 10, 24(2021).

    [7] L. Jiang, Y. Jing, Y. Li, W. Wan, Y. Cheng, L. Zheng, J. Wang, Z. Zhu, H. Wang, M. Feng, J. Zhang, S. Qu. Multidimensionally manipulated active coding metasurface by merging Pancharatnam-Berry phase and dynamic phase. Adv. Opt. Mater., 9, 2100484(2021).

    [8] L. Jiang, Y. Li, L. Zheng, Q. Yuan, Z. Zhu, W. Wan, H. Wang, Y. Pang, J. Wang, W. Wang, T. Cui, S. Qu. Smart metasurface for active and passive cooperative manipulation of electromagnetic waves. ACS Appl. Mater. Interfaces, 14, 54359-54368(2022).

    [9] Y. Li, Y. Pang, J. Wang, Q. Zheng, M. Feng, H. Ma, J. Zhang, Z. Xu, S. Qu. Wideband polarization conversion with the synergy of waveguide and spoof surface plasmon polariton modes. Phys. Rev. A, 10, 064002(2018).

    [10] S. Zhang, L. Huang, G. Geng, J. Li, X. Li, Y. Wang. Full-Stokes polarization transformations and time sequence metasurface holographic display. Photon. Res., 10, 1031-1038(2022).

    [11] Q. Xiao, Q. Ma, T. Yan, L. W. Wu, C. Liu, Z. X. Wang, X. Wan, Q. Cheng, T. J. Cui. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [12] B. Xiong, Y. Xu, J. Wang, L. Li, L. Deng, F. Cheng, R. Peng, M. Wang, Y. Liu. Realizing colorful holographic mimicry by metasurfaces. Adv. Mater., 33, 2005864(2021).

    [13] H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, S. A. Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [14] Y. Cheng, Y. Li, H. Wang, H. Chen, W. Wan, J. Wang, L. Zheng, J. Zhang, S. Qu. Ohmic dissipation-assisted complex amplitude hologram with high quality. Adv. Opt. Mater., 9, 2002242(2021).

    [15] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [16] R. Feng, B. Ratni, J. Yi, H. Zhang, A. de Lustrac, S. N. Burokur. Versatile metasurface platform for electromagnetic wave tailoring. Photon. Res., 9, 1650-1659(2021).

    [17] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [18] Y. Jia, Y. Liu, B. Hu, W. Xiong, Y. Bai, Y. Cheng, D. Wu, X. Liu, J. Christensen. Orbital angular momentum multiplexing in space-time thermoacoustic metasurfaces. Adv. Mater., 34, 2202026(2022).

    [19] E. Plum, X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, N. I. Zheludev. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 102, 113902(2009).

    [20] E. Plum, V. A. Fedotov, N. I. Zheludev. Specular optical activity of achiral metasurfaces. Appl. Phys. Lett., 108, 141905(2016).

    [21] X. Zhang, Y. Liu, J. Han, Y. Kivshar, Q. Song. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [22] F. Wu, Y. Tian, X. Luan, X. Lv, F. Li, G. Xu, W. Niu. Synthesis of chiral au nanocrystals with precise homochiral facets for enantioselective surface chemistry. Nano Lett., 22, 2915-2922(2022).

    [23] H. S. Khaliq, I. Kim, A. Zahid, J. Kim, T. Lee, T. Badloe, Y. Kim, M. Zubair, K. Riaz, M. Q. Mehmood, J. Rho. Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photon. Res., 9, 1667-1674(2021).

    [24] A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, Y. Yao. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl., 8, 78(2019).

    [25] M. Cen, J. Wang, J. Liu, H. He, K. Li, W. Cai, T. Cao, Y. J. Liu. Ultrathin suspended chiral metasurfaces for enantiodiscrimination. Adv. Mater., 34, 2203956(2022).

    [26] Y. Meng, J. Fan, M. Wang, W. Gong, J. Zhang, J. Ma, H. Mi, Y. Huang, S. Yang, R. S. Ruoff, J. Geng. Encoding enantiomeric molecular chiralities on graphene basal planes. Angew. Chem., 61, e202117815(2022).

    [27] B. Zhao, S. Yang, J. Deng, K. Pan. Chiral graphene hybrid materials: structures, properties, and chiral applications. Adv. Sci., 8, 2003681(2021).

    [28] W. Wan, Y. Li, H. Wang, Z. Zhu, Y. Cheng, L. Jiang, L. Zheng, J. Wang, S. Qu. Chiral absorber-based frequency selective rasorber with identical filtering characteristics for distinct polarizations. IEEE Trans. Antennas Propag., 70, 3506-3514(2022).

    [29] H. Po, C. Dabard, B. Roman, E. Reyssat, J. Bico, B. Baptiste, E. Lhuillier, S. Ithurria. Chiral helices formation by self-assembled molecules on semiconductor flexible substrates. ACS Nano, 16, 2901-2909(2022).

    [30] X. Li, C. Ji, S. Chen, Y. Han, J. Liu, J. Li. Phase enabled circular dichroism reversal in twisted bi-chiral propeller metamolecule arrays. Adv. Opt. Mater., 9, 2101191(2021).

    [31] I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener. New twists of 3D chiral metamaterials. Adv. Mater., 31, 1807742(2019).

    [32] C. Lin, C. Liu, Y. Chen, K. Chiu, J. Wu, B. Lin, C. Wang, Y. Chen, S. Chang, Y. Chang. Molecular chirality detection with periodic arrays of three-dimensional twisted metamaterials. ACS Appl. Mater. Interfaces, 13, 1152-1157(2021).

    [33] Z. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C. M. Soukoulis, H. Chen, Y. Liu. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater., 29, 1700412(2017).

    [34] Z. Liu, H. Du, J. Li, L. Lu, Z. Li, N. X. Fang. Nano-kirigami with giant optical chirality. Sci. Adv., 4, t4436(2018).

    [35] Y. Tang, Z. Liu, J. Deng, K. Li, J. Li, G. Li. Nano-kirigami metasurface with giant nonlinear optical circular dichroism. Laser Photon. Rev., 14, 2000085(2020).

    [36] T. Omori, R. Kainuma. Alloys with long memories. Nature, 502, 42-44(2013).

    [37] P. Chowdhury, H. Sehitoglu. Deformation physics of shape memory alloys-fundamentals at atomistic frontier. Prog. Mater. Sci., 88, 49-88(2017).

    [38] P. Hua, M. Xia, Y. Onuki, Q. Sun. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol., 16, 409-413(2021).

    [39] J. P. Oliveira, R. M. Miranda, F. M. Braz Fernandes. Welding and joining of NiTi shape memory alloys: a review. Prog. Mater. Sci., 88, 412-466(2017).

    [40] H. F. Li, F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei, R. Z. Valiev. Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. J. Mater. Sci. Technol., 35, 2156-2162(2019).

    [41] Y. Wang, J. Venezuela, M. Dargusch. Biodegradable shape memory alloys: progress and prospects. Biomaterials, 279, 121215(2021).

    [42] M. Formentini, S. Lenci. An innovative building envelope (kinetic façade) with shape memory alloys used as actuators and sensors. Autom. Constr., 85, 220-231(2018).

    [43] S. Li, D. Cong, W. Xiong, Z. Chen, X. Zhang, Z. Nie, S. Li, R. Li, Y. Wang, Y. Cao, Y. Ren, Y. Wang. A low-cost Ni–Mn–Ti–B high-temperature shape memory alloy with extraordinary functional properties. ACS Appl. Mater. Interfaces, 13, 31870-31879(2021).

    [44] M. Han, X. Guo, X. Chen, C. Liang, H. Zhao, Q. Zhang, W. Bai, F. Zhang, H. Wei, C. Wu, Q. Cui, S. Yao, B. Sun, Y. Yang, Q. Yang, Y. Ma, Z. Xue, J. W. Kwak, T. Jin, Q. Tu, E. Song, Z. Tian, Y. Mei, D. Fang, H. Zhang, Y. Huang, Y. Zhang, J. A. Rogers. Submillimeter-scale multimaterial terrestrial robots. Sci. Robot., 7, 107477(2022).

    [45] C. Lor, R. Phon, M. Lee, S. Lim. Multi-functional thermal-mechanical anisotropic metasurface with shape memory alloy actuators. Mater. Des., 216, 110569(2022).

    [46] X. Chen, J. Gao, B. Kang. Achieving a tunable metasurface based on a structurally reconfigurable array using SMA. Opt. Express, 26, 4300-4308(2018).

    [47] Y. Song, Y. Shen. A metasurface radar for steering ultrasonic guided waves. J. Sound Vib., 538, 117260(2022).

    [48] A. Lakhtakia, V. K. Varadan, V. V. Varadan. Time-Harmonic Electromagnetic Fields in Chiral Media(1989).

    [49] G. Vaman, E. E. Radescu. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E, 65, 046609(2002).

    [50] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis. Magnetic response of metamaterials at 100 terahertz. Science, 306, 1351-1353(2004).

    [51] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Toroidal dipolar response in a metamaterial. Science, 330, 1510-1512(2010).

    Lixin Jiang, Qi Yuan, Hao Yang, Yongfeng Li, Lin Zheng, Zhibiao Zhu, Shuang Liang, Yongqiang Pang, He Wang, Jiafu Wang, Shaobo Qu. Shape memory alloy-based 3D morphologically reconfigurable chiral metamaterial for tailoring circular dichroism by voltage control[J]. Photonics Research, 2023, 11(3): 373
    Download Citation