• Photonics Research
  • Vol. 10, Issue 5, 1297 (2022)
Yujing Li1、2, Shanxiang Zhang1、2, Linghua Wu1、2, Zhongwen Cheng1、2, Zhenhui Zhang1、2, Haohao Wang1、2, Shuxiang Zhao1、2, Mingyang Ren1、2, Sihua Yang1、2, Da Xing1、2、4、*, and Huan Qin1、2、3、5、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 3Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 4e-mail: xingda@scnu.edu.cn
  • 5e-mail: qinghuan@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.452968 Cite this Article Set citation alerts
    Yujing Li, Shanxiang Zhang, Linghua Wu, Zhongwen Cheng, Zhenhui Zhang, Haohao Wang, Shuxiang Zhao, Mingyang Ren, Sihua Yang, Da Xing, Huan Qin. Polarization microwave-induced thermoacoustic imaging for quantitative characterization of deep biological tissue microstructures[J]. Photonics Research, 2022, 10(5): 1297 Copy Citation Text show less
    References

    [1] N. Ghosh, I. A. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).

    [2] R. Oldenbourg. A new view on polarization microscopy. Nature, 381, 811-812(1996).

    [3] N. T. Clancy, S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, D. S. Elson. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed. Opt. Express, 5, 4108-4117(2014).

    [4] J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, Z. Chen. Use of polar decomposition for the diagnosis of oral precancer. Appl. Opt., 46, 3038-3045(2007).

    [5] W. Wang, L. G. Lim, S. Srivastava, J. S. B. Yan, A. Shabbir, Q. Liu. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J. Biomed. Opt., 19, 046020(2014).

    [6] J. Jagtap, S. Chandel, N. Das, J. Soni, S. Chatterjee, A. Pradhan, N. Ghosh. Quantitative Mueller matrix fluorescence spectroscopy for precancer detection. Opt. Lett., 39, 243-246(2014).

    [7] P. Shukla, A. Pradhan. Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states. Opt. Express, 17, 1600-1609(2009).

    [8] A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, A. Martino. Polarimetric imaging of uterine cervix: a case study. Opt. Express, 21, 14120-14130(2013).

    [9] H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, H. Ma. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt., 19, 106007(2014).

    [10] A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. D. Martino. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express, 19, 1582-1593(2011).

    [11] I. Ahmad, M. Ahmad, K. Khan, S. Ashraf, S. Ahmad, M. Ikram. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt., 20, 056012(2015).

    [12] A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. Totobenazara, M. Antonelli, T. Novikova, B. Gayet, A. D. Martino, P. Validire. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt., 18, 046014(2013).

    [13] I. Ahmad, A. Khaliq, M. Iqbal, S. Khan. Mueller matrix polarimetry for characterization of skin tissue samples: a review. Photodiagn. Photodyn. Ther., 30, 101708(2020).

    [14] C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl., 10, 194(2021).

    [15] Z. Zhang, Y. Shi, L. Xiang, D. Xing. Polarized photoacoustic microscopy for vectorial-absorption-based anisotropy detection. Opt. Lett., 43, 5267-5270(2018).

    [16] Y. Qu, L. Li, Y. Shen, X. Wei, T. Wong, P. Hu, J. Yao, K. Maslov, L. V. Wang. Dichroism-sensitive photoacoustic computed tomography. Optica, 5, 495-501(2018).

    [17] C. Li, M. Pramanik, G. Ku, L. V. Wang. Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys. Rev. E, 77, 031923(2008).

    [18] X. Wang, D. R. Bauer, R. Witte, H. Xin. Microwave-induced thermoacoustic imaging model for potential breast cancer detection. IEEE. Trans. Biomed. Eng., 59, 2782-2791(2012).

    [19] M. Xu, L. V. Wang. Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration. Med. Phys., 29, 1661-1669(2002).

    [20] Z. Ji, W. Ding, F. Ye, C. Lou, D. Xing. Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer. Appl. Phys. Lett., 107, 094104(2015).

    [21] Z. Liu, L. Liu, Y. Xu, L. V. Wang. Transcranial thermoacoustic tomography: a comparison of two imaging algorithms. IEEE Trans. Med. Imaging, 32, 289-294(2012).

    [22] D. Razansky, S. Kellnberger, V. Ntziachristos. Near-field radiofrequency thermoacoustic tomography with impulse excitation. Med. Phys., 37, 4602-4607(2010).

    [23] X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, H. Xin. Impact of microwave pulses on thermoacoustic imaging applications. IEEE Antennas Wireless Propag. Lett., 11, 1634-1637(2012).

    [24] X. Wang, R. S. Witte, H. Xin. Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations. Appl. Phys. Lett., 108, 143104(2016).

    [25] X. Wang, T. Qin, Y. R. S. Qin, , H. Xin. Microwave-induced thermoacoustic communications. IEEE Trans. Microw. Theory, 65, 3369-3378(2017).

    [26] F. Gao, Y. Zheng, X. Feng, C. D. Ohl. Thermoacoustic resonance effect and circuit modelling of biological tissue. Appl. Phys. Lett., 102, 063702(2013).

    [27] Z. Khalique, P. F. Ferreira, A. D. Scott, S. Nielles-Vallespin, D. N. Firmin, D. J. Pennell. Diffusion tensor cardiovascular magnetic resonance imaging: a clinical perspective. Cardiovasc. Imaging, 13, 1235-1255(2019).

    [28] S. B. Rutkove, J. S. Wu, C. Zaidman, K. Kapur, S. Yim, A. Pasternak, L. Madabusi, H. Szelag, T. Harrington, J. Li, A. Pacheck, B. T. Darras. Loss of electrical anisotropy is an unrecognized feature of dystrophic muscle that may serve as a convenient index of disease status. Clin. Neurophysiol., 127, 3546-3551(2016).

    [29] M. Akay, D. Miklavčič, N. Pavšelj, F. X. Hart. Electric Properties of Tissues(2006).

    [30] L. Qian, J. Wang, L. Jin, B. Song, X. Wu. Effect of ventricular myocardium characteristics on the defibrillation threshold. Technol. Health Care, 26, 241-248(2018).

    [31] T. Sui, D. Liu, T. Liu, J. Deng, M. Chen, Y. Xu, Y. Song, H. Ouyang, L. Lai, Z. Li. LMNA-mutated rabbits: a model of premature aging syndrome with muscular dystrophy and dilated cardiomyopathy. Aging Dis., 10, 102(2019).

    [32] F. Yang, Q. Sha, R. P. Patterson. A novel electrode placement strategy for low-energy internal cardioversion of atrial fibrillation: a simulation study. Int. J. Cardiol., 158, 149-152(2012).

    [33] M. F. Wood, N. Ghosh, M. A. Li, S. H. Wallenburg, R. D. Weisel, B. C. Wilson, R. K. Li, I. A. Vitkin. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J. Biomed. Opt., 15, 047009(2010).

    [34] K. U. Spandana, K. K. Mahato, N. Mazumder. Polarization-resolved Stokes-Mueller imaging: a review of technology and applications. Laser Med. Sci., 34, 1283-1293(2019).

    [35] J. C. Lin. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antennas Propag. Mag., 48, 157-159(2006).

    [36] A. T. Eckhart, R. T. Balmer, W. A. See, S. K. Patch. Ex vivo thermoacoustic imaging over large fields of view with 108  MHz irradiation. IEEE Trans. Biomed. Eng., 58, 2238-2246(2011).

    [37] E. Gao, Y. H. Lei, X. Shang, Z. M. Huang, L. Zuo, M. Boucher, Q. Fan, J. K. Chuprun, X. L. Ma, W. J. Koch. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ. Res., 107, 1445-1453(2010).

    [38] M. F. Haider, P. K. Majumdar, S. Angeloni, K. L. Reifsnider. Nonlinear anisotropic electrical response of carbon fiber-reinforced polymer composites. J. Thermoplast. Compos. Mater., 52, 1017-1032(2018).

    [39] Y. He, Y. Shen, X. Feng, C. Liu, L. V. Wang. Homogenizing microwave illumination in thermoacoustic tomography by a linear-tocircular polarizer based on frequency selective surfaces. Appl. Phys. Lett., 111, 063703(2017).

    [40] A. Yan, L. Lin, S. Na, C. Liu, L. V. Wang. Large field homogeneous illumination in microwave-induced thermoacoustic tomography based on a quasi-conical spiral antenna. Appl. Phys. Lett., 113, 123701(2018).

    Yujing Li, Shanxiang Zhang, Linghua Wu, Zhongwen Cheng, Zhenhui Zhang, Haohao Wang, Shuxiang Zhao, Mingyang Ren, Sihua Yang, Da Xing, Huan Qin. Polarization microwave-induced thermoacoustic imaging for quantitative characterization of deep biological tissue microstructures[J]. Photonics Research, 2022, 10(5): 1297
    Download Citation