• Photonic Sensors
  • Vol. 6, Issue 1, 1 (2016)
Deming LIU1、2, Qizhen SUN1、2、*, Ping LU1、2, Li XIA1、2, and Chaotan SIMA1、2
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology
  • 2National Engineering Laboratory for Next Generation Internet Access System, Wuhan, 430074, China
  • show less
    DOI: 10.1007/s13320-015-0299-z Cite this Article
    Deming LIU, Qizhen SUN, Ping LU, Li XIA, Chaotan SIMA. Research Progress in the Key Device and Technology for Fiber Optic Sensor Network[J]. Photonic Sensors, 2016, 6(1): 1 Copy Citation Text show less
    References

    [1] S. Huang, W. Lin, and M. Chen, “Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors,” Optics Letters, 1995, 20(11): 1244 1246.

    [2] D. T. Jenstrom and C. L. Chen, “A fiber optic microbend tactile sensor array,” Sensors and Actuators, 1989, 20(3): 239 248.

    [3] G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensors and Actuators B: Chemical, 1998, 51(98): 227 232.

    [4] C. Zhou, Y. Rao, and J. Jiang, “A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system,” in Proc. SPIE, vol. 5634, pp. 219 224, 2005.

    [5] Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technology Letters, 2007, 19(8): 622 624.

    [6] B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A novel fiber-optic sensor array based on the Sagnac interferometer,” Journal of Lightwave Technology, 1999, 17(11): 2316 2326.

    [7] H. Fu, D. Chen, and Z. Cai, “Fiber sensor systems based on fiber laser and microwave photonic technologies,” Sensors, 2012, 12(5): 5395–5419.

    [8] R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photonic Sensors, 2012, 2(4): 366 380.

    [9] G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: applications to impact monitoring,” Structure Health Monitoring, 2011, 10(1): 5 16.

    [10] C. Chan, W. Jin, H. L. Ho, and M. Suleyman Demokan, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 741 749.

    [11] D. Cooper, T. Coroy, and P. Smith, “Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays,” Applied Optics, 2001, 40(16): 2643 2654.

    [12] Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Optics and Lasers in Engineering, 2009, 47(10): 1028 1033.

    [13] M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Optics Communications, 2012, 285(13): 3082–3087.

    [14] C. Hu, H. Wen, and W. Bai, “A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings,” Journal of Lightwave Technology, 2014, 32(7): 1406 1411.

    [15] G. D. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber Bragg grating sensor interrogator,” IEEE Photonics Technology Letters, 2004, 16(10): 2323 2325.

    [16] Y. Yu, L. Lui, H. Y. Tam, and W. Chung, “Fiber-laser based wavelength division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, 2001, 13(7): 702 704.

    [17] K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photonics Technology Letters, 1992, 4(9): 1069 1072.

    [18] B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, et al., “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” in Proc. SPIE, vol. 4332, pp. 133 142, 2001.

    [19] J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, Y. K. Byoung, and H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” Journal of Lightwave Technology, 1985, 3(5): 1062 1072.

    [20] Y. Rao, K. Kalli, G. Brady, D, J, Webb, D. A. Jackson, L. Zhang, et al., “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electronics Letters, 1995, 31(12): 1009 1010.

    [21] Y. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Strain sensing of modern composite materials with a spatial/wavelength-division multiplexed fiber grating network,” Optics Letters, 1996, 21(9): 683 685.

    [22] Y. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous spatial, time and wavelength division multiplexed in-fibre grating sensing network,” Optics Communications, 1996, 125(1): 53 58.

    [23] Q. Sun, X. Li, M. Zhang, Q. Liu, H. Liu, and D. Liu, “High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications,” in Proc. SPIE, vol. 9044, pp. 90440L-1 90440L-10, 2013.

    [24] X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM based fiber-optic sensor network for perimeter intrusion detection,” Journal of Lightwave Technology, 2012, 30(8): 1113 1120.

    [25] X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, et al., “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Optics Express, 2012, 20(11): 12076 12084.

    [26] Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Optics Letters, 2008, 33(4): 324 326.

    [27] Y. Song, L. Zhan, S. Hu, Q. Ye, and Y. Xia, “Tunable multiwavelengthBrillouin-erbium fiber laser with a polarization-maintaining fiber sagnac loop filter,” IEEE Photonics Technology Letters, 2004, 16(9): 2015 2017.

    [28] H. Dong, G. Zhu, Q. Wang, H. Sun, N. K. Dutta, J. Jaques, et al., “Multiwavelength fiber ring laser source based on a delayed interferometer,” IEEE Photonics Technology Letters, 2005, 17(2): 303 305.

    [29] Y. Han, X. Dong, C. Kim, M. Jeong, and J. Lee, “Flexible all fiber Fabry-Pérot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser,” Optics Express, 2007, 15(6): 2921 2926.

    [30] Y. G. Han, C. S. Kim, J. U. Kang, and U. C. Peak, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technology Letters, 2003, 15(3): 383 385.

    [31] J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technology Letters, 2014, 16(4): 1026 1028.

    [32] X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, et al., “Demonstration of microfiber knot laser,” Applied Physics Letters, 2006, 89(14): 143513.

    [33] W. Fan, J. Gan, Z. Zhang, X. Wei, S. Xu, and Z. Yang, “Narrow linewidth single frequency microfiber laser,” Optics Letters, 2012, 37(20): 4323 4325.

    [34] A. Sulaiman, S. W. Harun, H. Arof, and H. Ahmad, “Compact and tunable erbium-doped fiber laser with microfiber Mach-Zehnder interferometer,” IEEE Journal of Quantum Electronics, 2012, 48(9): 1165–1168.

    [35] W. Jia, Q. Sun, X. Sun, J. Wo, Z. Xu, D. Liu, et al., “Wideband microfiber Fabry-Perot filter and its application to multiwavelength fiber ring laser,” IEEE Photonics Technology Letters, 2014, 26(10), 961 964.

    [36] W. Jia, Q. Sun, Z. Xu, X. Sun, and D. Liu, “Channel-spacing tunable multiwavelength erbium-doped fiber laser based on a microfiber Fabry-Perot filter,” in 2014 Conference on Lasers and Electro-Optics, San Jose, pp. 1 2, 2014.

    [37] J. Geng and S. Jiang, “Fiber lasers: the 2μm market heats up,” Optics and Photonics News, 2014, 25(7): 4–41.

    [38] F. McALeavey, B. D. MacCraith, J. O'Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber & Integrated Optics, 1997, 16(4): 355 368.

    [39] Q. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technology Letters, 2002, 14(5): 612 614.

    [40] S. Liu, F. Yan, T. Feng, B. Wu, Z. Dong,k and G. K. Chang, “Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Applied Optics, 2014, 53(24): 5522 5526.

    [41] X. Ma, S. Luo, and D. Chen, “Switchable and tunable thulium-doped fiber laser incorporating a Sagnac loop mirror,” Applied Optics, 2014, 53(20): 4382 4385.

    [42] S. Liu, F. Yan, W. Peng, T. Feng Z. Dong, and G. Chang, “Tunable dual-wavelength thulium-doped fiber laser by employing a HB-FBG,” IEEE Photonics Technology Letters, 2014, 26(18): 1809 1812.

    [43] W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, et al., “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Applied Optics, 2013, 52(19): 4601 4607.

    [44] M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technology Letters, 2005, 17(3): 552 554.

    [45] S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Optical Engineering, 2013, 52(8): 086105 086111.

    [46] W. Yang, P. Lu, S. Wang, D. Liu, and J. Zhang, “2-μm switchable, tunable and power-controllable dual-wavelength fiber laser based on parallel cavities using 3×3 coupler,” Applied Physics B, 2015, 120(2): 349 354.

    [47] M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Optics Letters. 1998, 23(2): 138–140.

    [48] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, et al., “Mode-locked 1.93 mm thulium fiber laser with a carbon nanotube absorber,” Optics Letters, 2008, 33(12): 1336 1338.

    [49] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611 622.

    [50] X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Physical Review A, 2011, 84(5): 1688 1690.

    [51] Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Research, 2010, 3(6): 404 411.

    [52] K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Optics Express, 2008, 16(15): 11453 11458.

    [53] L. R. Chen, G. E. Town, P. Y. Cortès, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength, actively mode-locked fibre laser with 0.7 nm wavelength spacing,” Electronics Letters, 2000, 36(23): 1921 1923.

    [54] S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technology Letters, 2006, 18(13): 1451 1453.

    [55] D. Pudo and L. R. Chen, “Actively mode locked, quadruple-wavelength fibre laser with pump-controlled wavelength switching,” Electronics Letters, 2003, 39(3): 272 274.

    [56] Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, et al., “Tunable and switchable dual-wavelength Tm-doped modelocked fiber laser by nonlinear polarization evolution,” Optics Express, 2015, 23(4): 4369 4376.

    [57] J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 and 1944 nm in fiber laser based on common graphene saturable absorber,” Optics Express, 2013, 21(16): 18994 19002.

    [58] Y. Luo, Q. Sun, Z. Wu, Z. Xu, S. Fu, L. Zhao, et al., “258-MHz group velocity locked vector dissipative solitons in a dispersion-managed short-cavity fiber laser,” in Optoelectronic Global Conference, China, pp. 29–31, 2015.

    [59] Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638.

    [60] A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” Journal of Lightwave Technology, 2012, 30(21): 3420 3426.

    [61] L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Optics Letters, 2013, 38(19): 3762 3764.

    [62] C. Jáuregui, J. M. López-Higuera, A. Cobo, O. M. Conde, and J. Zubía, “Multiparameter sensor based on a chaotic fiber-ring resonator,” Journal of the Optical Society of America B, 2006, 23(10): 2024 2031.

    [63] X. Zhang and L. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Systems Science and Control Engineering, 2014, 2(1): 268–274.

    [64] Z. Ma, M. Zhang, Y. Liu, X. Bao, H. Liu, Y. Zhang, et al., “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics Journal, 2015, 7(4): 1 7.

    [65] L. Xia, C. Yu, Y. Ran, J. Xu, and W. Li, “Static/dynamic strain sensing applications by monitoring the correlation peak from optical wideband chaos,” Optics Express, 2015, 23(20): 26113 26123.

    [66] Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, et al., “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Optics Express, 2015, 23(3): 2416 2423.

    [67] C. G. Askins, M. A. Putnam, and E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Proc. SPIE, vol. 2444, pp. 257 266, 1995.

    [68] A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442 1463.

    [69] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Optics Letters, 1993, 18(16): 1370–1372.

    [70] G. Yang, J. H. Guo, G. L. Xu, L. D. Lv, G. J. Tu, and L. Xia, “A novel fiber Bragg grating wavelength demodulation system based on F-P etalon,” in Proc. SPIE, vol. 9270, pp. 92700V-1 92700V-7, 2014.

    [71] D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technology Letters, 2002, 14(3): 355 357.

    [72] Q. Sun, J. Cheng, F. Ai, X. Li, D. Liu, and L. Zhang, “High speed and high resolution demodulation system for hybrid WDM/FDM based fiber microstructure sensor network by using Fabry-Perot filter,” in 2015 Conference on Lasers and Electro-Optics, San Jose, pp. 1 2, 2015.

    [73] F. Ai, Q. Sun, J. Cheng, and D. Liu, “High resolution demodulation platform for large capacity hybrid WDM/FDM microstructures sensing system assisted by tunable FP filter,” in Progress in Electromagnetics Research Symposium, Cambridge, pp. 1200 1203, 2015.

    [74] M. Legre, R. Thew, and H. Zbinden, “High resolution Optical Time Domain Reflectometer based on 1.55 μm up-conversion photon-counting module,” Optics Express, 2007, 15(13): 8237– 8242.

    [75] J. H. Park, J. S. Baik, and C. H. Lee, “Fault-detection technique in a WDM-PON,” Optics Express, 2007, 15(4): 1461 1466.

    [76] Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, et al., “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Optics Express, 2015, 23(3): 2416 2423.

    [77] J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science & Technology, 2012, 24(1): 111 123.

    [78] H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors, 2010, 10(3): 1716 1742.

    [79] X. Sun, Q. Sun, S. Zhu, Y. Yuan, Z. Huang, X. Liu, et al., “High sensitive ammonia gas sensor based on graphene coated microfiber,” in PIERS Proceedings, Prague, pp. 1196 199, 2015.

    [80] Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Optics Letters, 2006, 31(16): 2405 2407, 2006.

    [81] W. Jin, H. Ho, Y. Cao, J. Ju, and L. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Optical Fiber Technology, 2013, 19(6): 741 759.

    [82] J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied Optics, 2008, 47(15): 2790 2797.

    [83] J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, et al., “Towards practical gas sensing with micro-structured fiber,” Measurement Science and Technology, 2009, 20(7): 190 190.

    [84] G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fiber optic multi-point sensor for gas detection,” Sensors and Actuators B: Chemical, 1998, 51(1): 227 232.

    [85] W. Jin, “Performance analysis of a time-division-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feedback laser,” Applied optics, 1999, 38(25): 5290 5297.

    [86] G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy,” Journal of Lightwave Technology, 2004, 22(3): 813–819.

    [87] M. Zavr nik and G. Stewart, “Theoretical analysis of a quasi-distributed optical sensor system using FMCW for application to trace gas measurement,” Sensors and Actuators B: Chemical, 2000, 71(1): 31–35.

    [88] F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing system based on frequency-shifted interferometry,” Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008, San Diego, United States, pp. 1 3, 2008.

    [89] W. Zhang, Y. Lu, L. Duan, Z. Zhao, W. Shi, and J. Yao, “Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter,” Optics Express, 2014, 22(20): 24545 24550.

    [90] OptoSniff/Optosci, http://www.optosniff.com/.

    [91] C. Caliendo, “Latest trends in acoustic sensing,” Sensors, 2014, 14(4): 5781 5784.

    [92] C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D: Applied Physics, 2004, 37(18): R197 R216.

    [93] J. G. Teixeira, I. T. Leite, S. Silva, and O. Fraz o, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198–208.

    [94] S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” in Proc. SPIE, vol. 5855, pp. 627 630, 2005.

    [95] R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Measurement Science and Technology, 2004, 15(8): 1490 1495.

    [96] B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, et al., “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Optics Letters, 2012, 37(22): 4768 4770.

    [97] J. P. Mutschlecner and R. W. Whitaker, “Infrasound from earthquakes,” Journal of Geophysical Research: Atmospheres, 2005, 110(110): 372 384.

    [98] S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil,” IEEE Sensors Journal, 2014, 14(7): 2293 2298.

    [99] S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Intensity demodulation-based acoustic sensor using dual fiber Bragg gratings and a titanium film,” Journal of Modern Optics, 2014, 61(12): 1033 1038.

    [100] S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” Journal of Modern Optics, 2013, 60(21): 1892 1897.

    [101] Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, et al., “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, 2015, 7(2): 1 7.

    Deming LIU, Qizhen SUN, Ping LU, Li XIA, Chaotan SIMA. Research Progress in the Key Device and Technology for Fiber Optic Sensor Network[J]. Photonic Sensors, 2016, 6(1): 1
    Download Citation