• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 1, 76 (2017)
Le LIN1、2、*, Meiling ZHENG1, Xianzi DONG1, Feng JIN1, Yongliang ZHANG1, Zhensheng ZHAO1, and Xuanming DUAN1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.01.012 Cite this Article
    LIN Le, ZHENG Meiling, DONG Xianzi, JIN Feng, ZHANG Yongliang, ZHAO Zhensheng, DUAN Xuanming. Improvement of longitudinal resolution of micro/nano scale polymer structure with radially polarized beam[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 76 Copy Citation Text show less
    References

    [2] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

    [4] Campo A D, Greiner C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography[J]. Journal of Micromechanics and Microengineering, 2007, 17(6): 81-95.

    [5] Lorenz H, Despont M, Fahrni N, et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS[J]. Sensors and Actuators A: Physical, 1998, 64(1): 33-39.

    [6] Becker E W, Ehrfeld W, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)[J]. Microelectronic Engineering, 1986, 4(1): 35-56.

    [7] Lee C H, Chang T W, Lee K L, et al. Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching[J]. Appl. Phys. A, 2004, 79(8): 2027-2031.

    [8] Xing J F, Dong X Z, Chen W Q, et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency[J]. Appl. Phys. Lett., 2007, 90(13): 131106.

    [9] Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication[J]. Appl. Phys. Lett., 2008, 92(9): 091113.

    [10] Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Opt. Comm., 2000, 179(1-6): 1-7.

    [11] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys. Rev. Lett., 2003, 91(23): 233901.

    [12] Varghese B, Verhagen R, Hussain A, et al. Quantitative assessment of birefringent skin structures in scattered light confocal imaging using radially polarized light[J]. Sensors, 2013, 13(9): 12527-12535.

    [13] Kim W C, Park N C, Yoon Y J, et al. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage[J]. Opt. Rev., 2007, 14(4): 236-242.

    [14] Carretero L, Acebal P, Blaya S, et al. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization[J]. Opt. Expr., 2014, 22(3): 3284-3295.

    [15] Trk P, Varga P, Laczik Z, et al. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation[J]. Journal of the Optical Society of American A, 1995, 12(2): 325-332.

    [16] Hao B, Leger J. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam[J]. Opt. Expr., 2007, 15(6): 3550-3556.

    [18] Chen H, Tripathi S, et al. Demonstration of flat-top focusing under radial polarization illumination[J]. Opt. Lett., 2014, 39(4): 834-837.

    [19] Suresh P, Mariyal C, Gokulakrishnan K, et al. Investigating the focus shaping of the TEM11 beam with radial varying polarization[J]. Optik, 2015, 12(18): 1691-1694.

    LIN Le, ZHENG Meiling, DONG Xianzi, JIN Feng, ZHANG Yongliang, ZHAO Zhensheng, DUAN Xuanming. Improvement of longitudinal resolution of micro/nano scale polymer structure with radially polarized beam[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 76
    Download Citation