• Opto-Electronic Engineering
  • Vol. 44, Issue 3, 331 (2017)
[in Chinese] and [in Chinese]*
Author Affiliations
  • Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.03.008.1 Cite this Article
    [in Chinese], [in Chinese]. Two dimensional subdiffraction focusing beyond the near-field diffraction limit via metasurface[J]. Opto-Electronic Engineering, 2017, 44(3): 331 Copy Citation Text show less
    References

    [1] Betzig E, Trautman J K. Near-field optics: microscopy, spec-troscopy, and surface modification beyond the diffraction lim-it[J]. Science, 1992, 257(5067): 189–195.

    [2] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83–91.

    [3] Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electro-magnetic radiation[J]. Nature Photonics, 2014, 8(1): 13–22.

    [4] Shi Haofei, Guo L J. Design of plasmonic near field plate at optical frequency[J]. Applied Physics Letters, 2010, 96(14): 141107.

    [5] Xu Ting, Agrawal A, Abashin M, et al. All-angle negative re-fraction and active flat lensing of ultraviolet light[J]. Nature, 2014, 497(7450): 470–474.

    [6] Luo Xiangang, Pu Mingbo, Ma Xiaolinag, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.

    [7] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.

    [8] Gordon R. Limits for superfocusing with finite evanescent wave amplification[J]. Optics Letters, 2012, 37(5): 912–914.

    [9] Fang N, Lee H, Sun Cheng, et al. Sub–diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534–537.

    [10] Song Maowen, Wang Changtao, Zhao Zeyu, et al. Nanofo-cusing beyond the near-field diffraction limit via plasmonic Fano resonance[J]. Nanoscale, 2016, 8(3): 1635–1641.

    [11] Merlin R. Radiationless electromagnetic interference: eva-nescent-field lenses and perfect focusing[J]. Science, 2007, 317(5840): 927–929.

    [12] Grbic A, Jiang Lei, Merlin R. Near-field plates: subdiffraction focusing with patterned surfaces[J]. Science, 2008, 320(5875): 511–513.

    [13] Imani F M, Grbic A. Generating evanescent Bessel beams using near-field plates[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3155–3164.

    [14] Grbic A, Merlin R. Near-field focusing plates and their design[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(10): 3159–3165.

    [15] Lan Lu, Jiang Wei, Ma Yungui. Three dimensional subwave-length focus by a near-field plate lens[J]. Applied Physics Letters, 2013, 102(23): 231119.

    [16] Cai Wenshan, Shalaev V. Optical Metamaterials[M]. New York: Springer, 2010.

    [17] Song Maowen, Yu Honglin, Hu Chenggang, et al. Conversion of broadband energy to narrowband emission through dou-ble-sided metamaterials[J]. Optics Express, 2013, 21(26): 32207–32216.

    [18] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59.

    [19] Pu Mingbo, Hu Chenggang, Huang Cheng, et al. Investigation of Fano resonance in planar metamaterial with perturbed pe-riodicity[J]. Optics Express, 2013, 21(1): 992–1001.

    [20] Boltasseva A, Atwater H A. Low-loss plasmonic metamateri-als[J]. Science, 2011, 331(6015): 290–291.

    [21] Zeng Beibei, Gao Yongkang, Bartoli F J. Ultrathin nanostructured metals for highly transmissive plasmonic sub-tractive color filters[J]. Scientific Reports, 2013, 3: 2840.

    [22] Gordon R. Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array[J]. Physics Review Letters, 2009, 102(20): 207402.

    [23] Chen Shuwen, Jin Shilong, Gordon R. Subdiffraction focusing enabled by a Fano resonance[J]. Physical Review X, 2014, 4(3): 031021.

    [24] Yu Nanfang, Capasso F. Flat optics with designer metasur-faces[J]. Nature Materials, 2014, 13(2): 139–150.

    [25] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

    [26] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

    [27] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and ampli-tude[J]. Advanced Materials, 2014, 26(29): 5031–5036.

    [28] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D me-ta-holography by broadband plasmonic modulation[J]. Science Advance, 2016, 2(11): e1601102.

    [29] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.

    [30] Cui Jianhua, Huang Cheng, Pan Wenbo, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J]. Scientific Reports, 2016, 6: 30771.

    [31] Liu Kaipeng, Guo Yinghui, Pu Mingbo, et al. Wide field-of-view and broadband terahertz beam steering based on gap plasmon geodesic antennas[J]. Scientific Reports, 2017, 7: 41642.

    [32] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. Optical phased array radiating optical vortex with manipulated topological charges[J]. Optics Express, 2015, 23(4): 4873–4879.

    [33] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [34] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and sub-wavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [35] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babi-net-inverted plasmonic metalenses[J]. Light: Science & Ap-plications, 2013, 2(4): e27.

    [36] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

    [37] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750–5755.

    [38] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ul-trabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Review, 2015, 9(6): 713–719.

    [39] Palik E D. Handbook of Optical Constants of Solids[M]. New York: Academic, 1985.

    [40] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829–834.

    [41] Alonso-Gonzalez P, Schnell M, Sarriugarte P, et al. Real-space mapping of fano interference in plasmonic metamolecules[J]. Nano Letters, 2011, 11(9): 3922–3926.

    [in Chinese], [in Chinese]. Two dimensional subdiffraction focusing beyond the near-field diffraction limit via metasurface[J]. Opto-Electronic Engineering, 2017, 44(3): 331
    Download Citation