[1] Chun-Hung Chiu, Henry Hin-Lee Chan, Wai-Sun Ho et al.. Prospective study of pulsed dye laser in conjunction with cryogen spray cooling for treatment of port wine stains in Chinese patients[J]. Dermatol Surg., 2003, 29(9):909~915
[6] Guillermo Aguilar, Guo-Xiang Wang, J. Stuart Nelson. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(14):2169~2181
[7] S. W. Lanigan, S. M. Taibjee. Recent advances in laser treatment of port-wine stains[J]. British J. Dermatology, 2004, 151(3):527~533
[8] K. M. Kelly, J. S. Nelson. Update on the clinical management of port wine stains[J]. Lasers Med. Sci., 2000, 15(4):220~226
[9] Kristen M. Kelly, J. Stuart Nelson, Gary P. Lask et al.. Cryogen spray cooling in combination with nonablative laser treatment of facial phytides[J]. Arch. Dermatol., 1999, 135(6):691~694
[10] Guillermo Aguilar, Henry Vu, J. Stuart Nelson. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling[J]. Phys. Med. Biol., 2004, 49(10):N147~N153
[11] Julio C. Ramirez-San-Juan, Guillermo Aguilar, Alia T. Tuqan et al.. Skin model surface temperatures during single and multiple cryogen spurts used in laser dermatologic surgery[J]. Lasers Surg. Med., 2005, 36(2):141~146
[12] Wim Verkruysse, Boris Majaron, Guillermo Aguilar et al.. Dynamics of cryogen deposition relative to heat extraction rate during cryogen spray cooling[C]. SPIE, 2000, 3907:37~48
[13] Guillermo Aguilar, Wim Verkruysse, Boris Majaron et al.. Measurement of heat flux and heat transfer coefficient during continuous cryogen spray cooling for laser dermatologic surgery[J]. IEEE J. Sel. Top. Quantum Electron., 2001, 7(6):1013~1021
[14] Bahman Anvari, Benjamin J. Ver Steeg, Thomas E. Milner et al.. Cryogen spray cooling of human skin: Effects of ambient humidity level, spraying distance, and cryogen boiling point[C]. SPIE, 1997, 3192:106~110
[15] Guillermo Aguilar, Boris Majaron, Karl Pope et al.. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery[J]. Lasers Surg. Med., 2001, 28(2):113~120
[16] Boris Majaron, Guillermo Aguilar, Brooke Basinger et al.. Sequential cryogen spraying for heat flux control at the skin surface[C]. SPIE, 2001, 4244:74~81
[17] Emil Karapetian, Guillermo Aguilar, Sol Kimel et al.. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Phys. Med. Biol., 2003, 48(1):N1~N6
[18] G. L. Hubbard, V. E. Denny, A. F. Mills. Droplet evaporation: Effects of transients and variable properties[J]. Int. J. Heat Mass Transfer, 1975, 18(9):1003~1008
[19] G. Aguilar, B. Majaron, W. Verkruysse et al.. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays[J]. Int. J. Heat Mass Transfer, 2001, 44(17):3201~3211
[20] W. E. Ranz, W. R. Marshall. Evaporation from drops[J]. Chem. Eng. Prog., 1952, 48(4):141~146, 173~180
[21] Arthur H. Lefebre. Atomization and Sprays[M]. New York: Hemisphere Pub. Corp., 1989
[22] Victor L. Streeter, E. Benjamin Wylie. Fluid Mechanics[M]. New York: Mraw-Hill, 1998
[24] J. P. Hindmarsh, A. B. Russell, X. D. Chen. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J]. Int. J. Heat Mass Transfer., 2003, 46(7):1199~1213