• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242006 (2023)
Zhilun Lu1、*, Dongyang Sun1, Ge Wang2, Jianwei Zhao3, Bin Zhang3, Dawei Wang3, and Islam Shyha1
Author Affiliations
  • 1School of Computing, Engineering and The Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
  • 2Department of Materials, University of Manchester, Manchester S13 9PL, UK
  • 3Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
  • show less
    DOI: 10.1142/S2010135X22420061 Cite this Article
    Zhilun Lu, Dongyang Sun, Ge Wang, Jianwei Zhao, Bin Zhang, Dawei Wang, Islam Shyha. Energy storage properties in Nd-doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242006 Copy Citation Text show less
    References

    [1] G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I. M. Reaney. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev., 121, 6124(2021).

    [2] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).

    [3] X. Hao. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr., 3, 1330001(2013).

    [4] A. Khesro, F. A. Khan, R. Muhammad, A. Ali, M. Khan, D. Wang. Energy storage performance of Nd3+-doped BiFeO3–BaTiO3-based lead-free ceramics. Ceram. Int., 48, 29938(2022).

    [5] B. Zhang, X.-M. Chen, W.-W. Wu, A. Khesro, P. Liu, M. Mao, K. Song, R. Sun, D. Wang. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J., 446, 136926(2022).

    [6] S. Zhou, Y. Pu, X. Zhang, Y. Shi, Z. Gao, Y. Feng, G. Shen, X. Wang, D. Wang. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem. Eng. J., 427, 131684(2022).

    [7] D. Han, C. Wang, Z. Zeng, X. Wei, P. Wang, Q. Liu, D. Wang, F. Meng. Ultrahigh energy efficiency of (1-x)Ba0.85Ca0.15Zr0.1-Ti0.9O3-xBi(Mg0.5Sn0.5)O3 lead-free ceramics. J. Alloys Compd., 902, 163721(2022).

    [8] S. Zhou, Y. Pu, X. Zhao, T. Ouyang, J. Ji, Q. Zhang, C. Zhang, S. Sun, R. Sun, J. Li, D. Wang. Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide. J. Am. Ceram. Soc., 105, 4796(2022).

    [9] X. Wang, Y. Fan, Z. Bin, A. Mostaed, L. Li, A. Feteira, D. Wang, D. C. Sinclair, G. Wang, I. M. Reaney. High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics. J. Eur. Ceram. Soc., 42, 7381(2022).

    [10] Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, D. C. Sinclair, D. Wang, S.-Y. Liu, I. M. Reaney. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci., 13, 2938(2020).

    [11] H. Yang, Z. Lu, L. Li, W. Bao, H. Ji, J. Li, A. Feteira, F. Xu, Y. Zhang, H. Sun, Z. Huang, W. Lou, K. Song, S. Sun, G. Wang, D. Wang, I. M. Reaney. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance. ACS Appl. Mater. Interfaces, 12, 43942(2020).

    [12] H. Ji, D. Wang, W. Bao, Z. Lu, G. Wang, H. Yang, A. Mostaed, L. Li, A. Feteira, S. Sun, F. Xu, D. Li, C.-J. Ma, S.-Y. Liu, I. M. Reaney. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater., 38, 113(2021).

    [13] H. Wang, Y. Liu, T. Yang, S. Zhang. Adv. Funct. Mater., 29, 1807321(2019).

    [14] Y. Chen, J. Chen, S. Yang, Y. Li, X. Gao, M. Zeng, Z. Fan, X. Gao, X. Lu, J. Liu. A bi-functional ferroelectric Pb(Zr0.52Ti0.48)O3 films: Energy storage properties and ferroelectric photovoltaic effects. Mater. Res. Bull., 107, 456(2018).

    [15] X. Liu, Y. Li, X. Hao. Ultra-high energy-storage density and fast discharge speed of (Pb0.98−xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J. Mater. Chem. A, 7, 11858(2019).

    [16] Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E. D. Politova, S. Y. Stefanovich, N. V. Tarakina, I. Abrahams, H. Yan. High energy density in silver niobate ceramics. J. Mater. Chem. A, 4, 17279(2016).

    [17] D. Yang, J. Gao, L. Shu, Y.-X. Liu, J. Yu, Y. Zhang, X. Wang, B.-P. Zhang, J.-F. Li. Lead-free antiferroelectric niobates AgNbO3and NaNbO3 for energy storage applications. J. Mater. Chem. A, 8, 23724(2020).

    [18] L. Zhao, J. Gao, Q. Liu, S. Zhang, J. F. Li. Silver niobate lead-free antiferroelectric ceramics: Enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces, 10, 819(2018).

    [19] L. Zhao, Q. Liu, S. Zhang, J.-F. Li. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2modification. J. Mater. Chem. C, 4, 8380(2016).

    [20] J. Gao, Q. Liu, J. Dong, X. Wang, S. Zhang, J. F. Li. Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance. ACS Appl. Mater. Interfaces, 12, 6097(2020).

    [21] N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei. Aliovalent A-site engineered AgNbO3lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A, 7, 14118(2019).

    [22] N. Luo, K. Han, F. Zhuo, L. Liu, X. Chen, B. Peng, X. Wang, Q. Feng, Y. Wei. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C, 7, 4999(2019).

    [23] N. Luo, K. Han, L. Liu, B. Peng, X. Wang, C. Hu, H. Zhou, Q. Feng, X. Chen, Y. Wei. Lead-free Ag1−3xLaxNbO3 antiferroelectric ceramics with high-energy storage density and efficiency. J. Am. Ceram. Soc., 102, 4640(2019).

    [24] K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei. Ultrahigh energy-storage density in A-/ B-site co-doped AgNbO3lead-free antiferroelectric ceramics: Insight into the origin of antiferroelectricity. J. Mater. Chem. A, 7, 26293(2019).

    [25] K. Han, N. Luo, S. Mao, F. Zhuo, X. Chen, L. Liu, C. Hu, H. Zhou, X. Wang, Y. Wei. Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J. Materiomics, 5, 597(2019).

    [26] K. Han, N. Luo, Y. Jing, X. Wang, B. Peng, L. Liu, C. Hu, H. Zhou, Y. Wei, X. Chen, Q. Feng. Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int., 45, 5559(2019).

    [27] J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.-F. Li. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A, 7, 2225(2019).

    [28] C. Xu, Z. Fu, Z. Liu, L. Wang, S. Yan, X. Chen, F. Cao, X. Dong, G. Wang. La/Mn codoped AgNbO3 lead-free antiferroelectric ceramics with large energy density and power density. ACS Sustain. Chem. Eng., 6, 16151(2018).

    [29] Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A, 5, 17525(2017).

    [30] Z. Yan, D. Zhang, X. Zhou, H. Qi, H. Luo, K. Zhou, I. Abrahams, H. Yan. Silver niobate based lead-free ceramics with high energy storage density. J. Mater. Chem. A, 7, 10702(2019).

    [31] L. Zhao, Q. Liu, J. Gao, S. Zhang, J. F. Li. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater., 29, 1701824(2017).

    [32] Y. Tian, L. Jin, Q. Hu, K. Yu, Y. Zhuang, G. Viola, I. Abrahams, Z. Xu, X. Wei, H. Yan. Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A, 7, 834(2019).

    [33] N. Luo, K. Han, M. J. Cabral, X. Liao, S. Zhang, C. Liao, G. Zhang, X. Chen, Q. Feng, J. F. Li, Y. Wei. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat. Commun., 11, 4824(2020).

    [34] Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, K. Kleppe, D. Wang, S.-Y. Liu, I. M. Reaney. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy, 79, 105423(2021).

    [35] S. Li, H. Nie, G. Wang, C. Xu, N. Liu, M. Zhou, F. Cao, X. Dong. Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring. J. Mater. Chem. C, 7, 1551(2019).

    [36] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32, 751(1976).

    [37] I. Levin, J. C. Woicik, A. Llobet, M. G. Tucker, V. Krayzman, J. Pokorny, I. M. Reaney. Displacive ordering transitions in perovskite-like AgNb1/2Ta1/2O3. Chem. Mater., 22, 4987(2010).

    [38] K. Y. Yasuhiro Yoneda, S. Kohara. Structural investigations of AgNbO3 phases using high-energy X-ray diffraction. Trans. Mater. Res. Soc. Jpn., 37, 73(2012).

    [39] H. K. Hideki Kato, A. Kudo. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M Ta and Nb) with the perovskite structure. J. Phys. Chem. B, 106, 12441(2002).

    Zhilun Lu, Dongyang Sun, Ge Wang, Jianwei Zhao, Bin Zhang, Dawei Wang, Islam Shyha. Energy storage properties in Nd-doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242006
    Download Citation