• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 15 (2022)
Peng LIU*, Shimiao WU, Yunfeng WU, and Ning ZHANG
Author Affiliations
  • School of Materials Science and Engineering, Central South University, Changsha 410083, China
  • show less
    DOI: 10.15541/jim20210480 Cite this Article
    Peng LIU, Shimiao WU, Yunfeng WU, Ning ZHANG. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction[J]. Journal of Inorganic Materials, 2022, 37(1): 15 Copy Citation Text show less
    References

    [1] S CHU, A MAJUMDAR. Opportunities and challenges for a sustainable energy future. Nature, 488, 294-303(2012). https://doi.org/10.1038/nature11475

    [3] K LI, S PENG B, Y PENG T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. . ACS Catal, 6, 7485-7527(2016). https://pubs.acs.org/doi/10.1021/acscatal.6b02089

    [6] M MIKKELSEN, M JØRGENSEN, F C KREBS. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy and Environmental Science, 3, 43-81(2010). http://xlink.rsc.org/?DOI=B912904A

    [7] T ARAI, S SATO, T KAJINO et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy and Environmental Science, 6, 1274-1282(2013). http://xlink.rsc.org/?DOI=c3ee24317f

    [8] K HASHIMOTO, H IRIE, A FUJISHIMA. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 44, 8269-8285(2005). https://iopscience.iop.org/article/10.1143/JJAP.44.8269

    [9] R LONG, Y LI, L SONG et al. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 11, 3873-3889(2015). https://onlinelibrary.wiley.com/doi/10.1002/smll.201403777

    [10] H HUANG, J ZHOU, J ZHOU et al. Structure-retentive synthesis of a highly ordered mesoporous Nb2O5/N-doped graphene nanocomposite with superior interfacial contacts and improved visible- light photocatalysis. Catalysis Science & Technology, 9, 3373-3379(2019).

    [11] H ZHANG, Y CHEN, X ZHU et al. Mn2+-doped Zn2GeO4 for photocatalysis hydrogen generation. International Journal of Energy Research, 43, 5013-5019(2019). https://onlinelibrary.wiley.com/toc/1099114x/43/9

    [12] J ZHANG, W LI, Y LI et al. Self-optimizing bifunctional CdS/Cu2S with coexistence of light-reduced CuO for highly efficient photocatalytic H2 generation under visible-light irradiation. Applied Catalysis B: Environmental, 217, 30-36(2017). https://linkinghub.elsevier.com/retrieve/pii/S0926337317305027

    [13] A MANZI, T SIMON, C SONNLEITNER et al. Light-induced cation exchange for copper sulfide based CO2 reduction. Journal of the American Chemical Society, 137, 14007-14010(2015). https://pubs.acs.org/doi/10.1021/jacs.5b06778

    [14] M ZHAO, F HUANG, H LIN et al. CuGaS2-ZnS p-n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 8, 16670-16676(2016). http://xlink.rsc.org/?DOI=C6NR05002F

    [15] H KAGA, A KUDO. Cosubstituting effects of copper(I) and gallium (III) for ZnGa2S4 with defect chalcopyrite structure on photocatalytic activity for hydrogen evolution. Journal of Catalysis, 310, 31-36(2014). https://linkinghub.elsevier.com/retrieve/pii/S0021951713003151

    [18] D SARKAR, K GHOSH C, S MUKHERJEE et al. Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials and Interfaces, 5, 331-337(2013). https://pubs.acs.org/doi/10.1021/am302136y

    [19] H WANG, L ZHANG, Z CHEN et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43, 5234-5244(2014). http://xlink.rsc.org/?DOI=C4CS00126E

    [20] P PANMAND R, A SETHI Y et al. In situ fabrication of highly crystalline CdS decorated Bi2S3 nanowires (nano-heterostructure) for visible light photocatalyst application. RSC Advances, 6, 23508-23517(2016). http://xlink.rsc.org/?DOI=C6RA01488G

    [21] F GUO, W SHI, M LI et al. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Separation and Purification Technology, 210, 608-615(2019). https://linkinghub.elsevier.com/retrieve/pii/S138358661832519X

    [22] H TADA, T MITSUI, T KIYONAGA et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials, 5, 782-786(2006). https://doi.org/10.1038/nmat1734

    [23] Y HE, L ZHANG, B TENG et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environmental Science & Technology, 49, 649-656(2014). https://pubs.acs.org/doi/10.1021/es5046309

    [24] Q ZHOU, Z KANG S, X LI et al. One-pot hydrothermal preparation of wurtzite CuGaS2 and its application as a photoluminescent probe for trace detection of l-noradrenaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 124-129(2015). https://linkinghub.elsevier.com/retrieve/pii/S0927775714008188

    [25] Q LIANG, G JIANG, Z ZHAO et al. CdS-decorated triptycene- based polymer: durable photocatalysts for hydrogen production under visible-light irradiation. Catalysis Science & Technology, 5, 3368-3374(2015).

    [26] S WU, H PANG, W ZHOU et al. Stabilizing CuGaS2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO2 reduction under visible light. Nanoscale, 12, 8693-8700(2020). http://xlink.rsc.org/?DOI=D0NR00483A

    [27] F MA, G ZHAO, C LI et al. Fabrication of CdS/BNNSs nanocomposites with broadband solar absorption for efficient photocatalytic hydrogen evolution. CrystEngComm, 18, 631-637(2016). http://xlink.rsc.org/?DOI=C5CE02327K

    [28] Z ZHENG, N ZHANG, T WANG et al. Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 487, 82-90(2019). https://linkinghub.elsevier.com/retrieve/pii/S0169433219313492

    [29] T SIMON, N BOUCHONVILLE, J BERR M et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Materials, 13, 1013-1018(2014). https://doi.org/10.1038/nmat4049

    Peng LIU, Shimiao WU, Yunfeng WU, Ning ZHANG. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction[J]. Journal of Inorganic Materials, 2022, 37(1): 15
    Download Citation