• Journal of Inorganic Materials
  • Vol. 37, Issue 10, 1141 (2022)
Jing WU1, Libing YU1, Shuaishuai LIU1, Qiuyan HUANG1, Shanshan JIANG1, Matveev ANTON2, Lianli WANG3, Erhong SONG4、*, and Beibei XIAO1、*
Author Affiliations
  • 11. School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • 22. National Research Ogarev Mordovia State University, Saransk 430005, Russia
  • 33. School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • 44. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20220033 Cite this Article
    Jing WU, Libing YU, Shuaishuai LIU, Qiuyan HUANG, Shanshan JIANG, Matveev ANTON, Lianli WANG, Erhong SONG, Beibei XIAO. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141 Copy Citation Text show less
    (a) Atomic structure of TM1N4/TM2 and (b) screening criterion for TM1N4/TM2 combination
    1. (a) Atomic structure of TM1N4/TM2 and (b) screening criterion for TM1N4/TM2 combination
    Gibbs free energy difference between N2 and NNH with the orange line at 1.08 eV Colorful figures are available on website
    2. Gibbs free energy difference between N2 and NNH with the orange line at 1.08 eV Colorful figures are available on website
    Schematic reaction mechanismsColorful figure is available on website
    3. Schematic reaction mechanismsColorful figure is available on website
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Cr NRR mechanisms are (a) distal, (b) alternating and (c) enzymatic
    4. Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Cr NRR mechanisms are (a) distal, (b) alternating and (c) enzymatic
    (a-c) Charge variation of the three moieties along the optimal pathway and (d) N-N bond length change in NRR along preferred pathwayMoieties 1, 2, 3 represent the graphene substrate, active center, and NRR intermediates, respectively
    5. (a-c) Charge variation of the three moieties along the optimal pathway and (d) N-N bond length change in NRR along preferred pathwayMoieties 1, 2, 3 represent the graphene substrate, active center, and NRR intermediates, respectively
    Comparison of binding energy and bulk cohesive energy of the selected complexes
    S1. Comparison of binding energy and bulk cohesive energy of the selected complexes
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Mo NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    S2. Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Mo NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Ta NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    S3. Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Ta NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Cr embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    S4. Free energy diagrams and the corresponding configuration of the NRR intermediates on Cr embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Mo embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    S5. Free energy diagrams and the corresponding configuration of the NRR intermediates on Mo embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Ta embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    S6. Free energy diagrams and the corresponding configuration of the NRR intermediates on Ta embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy profiles of N2-to-NH3 conversion on the N vacancy
    S7. Free energy profiles of N2-to-NH3 conversion on the N vacancy
    Atomic configurations of the hydrogen adsorption on the nitrogen embedded in graphene after geometry optimization
    S8. Atomic configurations of the hydrogen adsorption on the nitrogen embedded in graphene after geometry optimization
    3dScTiVCrMnFeCoNi
    Eads(TM2) N2 end-on -0.22-0.36-0.62-0.72-1.02-1.07-0.89-0.59
    Eads(TM2) N2 side-on 0.12-0.02-1.17-0.35-0.59-0.51-0.33-0.19
    Eads(TM2) H 0.750.20-0.18-0.14-0.19-0.20-0.22-0.38
    4dYZrNbMoTcRuRhPd
    Eads(TM2) N2 end-on -0.14-0.22-1.05-0.70-0.73-0.99-0.73-1.30
    Eads(TM2) N2 side-on -0.130.11-0.42-0.43-0.47-0.44-0.25-0.96
    Eads(TM2) H 0.780.25-0.87-0.380.51-0.11-0.33-1.06
    5dLuHfTaWReOsIrPt
    Eads(TM2) N2 end-on -0.21-0.35-0.60-1.57-1.23-1.30-1.08-0.52
    Eads(TM2) N2 side-on 0.070.02-0.32-1.48-0.88-0.68-0.44-0.23
    Eads(TM2) H 0.65-0.01-1.33-0.92-0.88-0.81-0.87-0.99
    Table 1.

    Adsorption energies Eads on Mn1N4/TM2 (Eads in eV)

    3dScTiVCrMnFeCoNi
    Eads(TM2) N2 end-on -0.21-0.75-0.26-0.52-0.94-1.06-0.88-0.53
    Eads(TM2) N2 side-on -0.21-0.37-0.35-0.41-0.59-0.54-0.25-0.56
    Eads(TM2) H 0.930.330.27-0.02-0.14-0.25-0.11-0.37
    4dYZrNbMoTcRuRhPd
    Eads(TM2) N2 end-on -0.14-0.22-0.20-0.62-0.88-0.96-0.76-0.49
    Eads(TM2) N2 side-on 0.22-0.20-0.200.01-0.58-0.41-0.270.01
    Eads(TM2) H 0.900.210.17-0.23-0.12-0.12-0.09-0.33
    5dLuHfTaWReOsIrPt
    Eads(TM2) N2 end-on -0.20-0.31-0.64-0.91-1.15-1.27-1.09-0.26
    Eads(TM2) N2 side-on -0.200.07-0.49-0.77-0.94-0.68-0.480.22
    Eads(TM2) H 0.770.01-0.73-0.84-0.68-0.78-0.72-0.99
    Table 2.

    Adsorption energies Eads on Fe1N4/TM2 (Eads in eV)

    3dScTiVCrMnFeCoNi
    Eads(TM2) N2 end-on -0.21-0.37-0.68-0.84-1.01-1.05-0.85-0.46
    Eads(TM2) N2 side-on -0.20-0.37-0.29-0.51-0.64-0.53-0.26-0.56
    Eads(TM2) H 1.020.37-0.09-0.08-0.36-0.13-0.07-0.28
    4dYZrNbMoTcRuRhPd
    Eads(TM2) N2 end-on -0.12-0.19-0.44-0.61-0.82-0.93-0.75-0.48
    Eads(TM2) N2 side-on -0.13-0.20-0.03-0.29-0.57-0.42-0.25-0.48
    Eads(TM2) H 1.030.42-0.12-0.22-0.07-0.07-0.03-0.26
    5dLuHfTaWReOsIrPt
    Eads(TM2) N2 end-on -0.20-0.29-0.62-0.86-1.08-1.23-1.07-0.49
    Eads(TM2) N2 side-on -0.21-0.29-0.28-0.63-0.89-0.67-0.46-0.48
    Eads(TM2) H 0.820.23-0.50-0.75-0.63-0.72-0.69-0.87
    Table 3.

    Adsorption energies Eads on Co1N4/TM2 (Eads in eV)

    3dScTiVCrMnFeCoNi
    Eads(TM2) N2 end-on -0.21-0.41-0.72-0.91-1.04-1.07-0.79-0.58
    Eads(TM2) N2 side-on -0.190.02-0.41-0.63-0.66-0.50/-0.58
    Eads(TM2) H 0.970.19-0.14-0.40-0.23-0.22-0.18-0.27
    4dYZrNbMoTcRuRhPd
    Eads(TM2) N2 end-on -0.12-0.24-0.51-0.70-0.91-0.98-0.73-0.48
    Eads(TM2) N2 side-on -0.13-0.20-0.23-0.63-0.61-0.44-0.21-0.48
    Eads(TM2) H 0.970.15-0.33-0.22-0.12-0.13-0.16-0.25
    5dLuHfTaWReOsIrPt
    Eads(TM2) N2 end-on -0.20-0.33-0.74-0.98-1.17-1.30-1.06-0.65
    Eads(TM2) N2 side-on -0.200.06-0.49-0.94-0.95-0.68-0.41-0.65
    Eads(TM2) H 0.850.02-0.71-0.66-0.69-0.82-0.81-0.93
    Table 4.

    Adsorption energies Eads on Ni1N4/TM2 (Eads in eV)

    SystemMechanismsN2 adsorption R1R2R3R4R5R6NH3 desorption
    NiN4/Cr Distal-0.410.98-0.280.17-1.08-1.09-0.231.04
    Alternating-0.410.980.05-0.31-0.25-1.29-0.711.04
    Enzymatic-0.100.570.16-0.56-0.12-1.51-0.381.04
    NiN4/Mo Distal-0.270.92-0.08-0.22-1.14-0.71-0.201.04
    Alternating-0.270.920.16-0.560.06-1.52-0.491.04
    Enzymatic-0.110.600.18-0.890.50-1.54-0.441.04
    NiN4/Ta Distal-0.180.69-0.37-0.06-1.22-1.020.221.04
    Alternating-0.180.690.05-0.880.11-1.780.051.04
    Enzymatic0.040.11-0.23-0.700.58-1.70-0.041.04
    Table 5.

    Free energy change ΔG (ΔG in eV), Ri stands for the ith protonation step

    DistalAlternatingEnzymatic
    RDSΔGmaxRDSΔGmaxRDSΔGmax
    Cr*N2+H→*NNH 1.03*N2+H→*NNH 1.03*N*N+H→*N*NH0.66
    NiN4/Cr *N2+H→*NNH 0.98*N2+H→*NNH 0.98*N*N+H→*N*NH0.57
    Mo*N2+H→*NNH 1.27*N2+H→*NNH 1.27*N*N+H→*N*NH0.43
    NiN4/Mo *N2+H→*NNH 0.92*N2+H→*NNH 0.92*N*N+H→*N*NH0.60
    Ta*NNH2+H→*N 0.72*N2+H→*NNH 0.66*NH*NH2+H→*NH2*NH20.49
    NiN4/Ta *N2+H→*NNH 0.69*N2+H→*NNH 0.69*NH*NH2+H→*NH2*NH20.58
    Table 6.

    Potential determining step and its free energy change ΔGmax(ΔGmax in eV)

    Jing WU, Libing YU, Shuaishuai LIU, Qiuyan HUANG, Shanshan JIANG, Matveev ANTON, Lianli WANG, Erhong SONG, Beibei XIAO. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141
    Download Citation