• Photonic Sensors
  • Vol. 12, Issue 1, 31 (2022)
Farhad LARKI1、*, Yaser ABDI2, Parviz KAMELI1, and Hadi SALAMATI1
Author Affiliations
  • 1Department of Physics, Isfahan University of Technology, Isfahan 84156–83111, Iran
  • 2Nanophysics Research Lab, Department of Physics, University of Tehran, Tehran 84156–83111, Iran
  • show less
    DOI: 10.1007/s13320-020-0600-7 Cite this Article
    Farhad LARKI, Yaser ABDI, Parviz KAMELI, Hadi SALAMATI. An Effort Towards Full Graphene Photodetectors[J]. Photonic Sensors, 2022, 12(1): 31 Copy Citation Text show less
    References

    [1] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, 2010, 5(10): 722–726.

    [2] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, “Bipolar supercurrent in graphene,” Nature, 2007, 446(7131): 56–59.

    [3] Z. Liu, R. Z. Wang, L. M. Liu, W. M. Lau, and H. Yan, “Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride,” Physical Chemistry Chemical Physics, 2015, 17(17): 11692–11699.

    [4] S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, and J. P. Hill, “High purity graphenes prepared by a chemical intercalation method,” Nanoscale, 2010, 2(10): 2139–2143.

    [5] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Applied Physics Letters, 2009, 94(24): 243114.

    [6] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, et al., “Nanotube-polymer composites for ultrafast photonics,” Advanced Materials, 2009, 21(38–39): 3874–3899.

    [7] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, et al., “Graphene mode-locked ultrafast laser,” ACS Nano, 2010, 4(2): 803–810.

    [8] J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi, “Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens,” Advanced Materials, 2012, 24(21): 2874–2878.

    [9] D. Akinwande, N. Petrone, and J. Hone, “Two-dimensional flexible nanoelectronics,” Nature Communications, 2014, 5(1): 1–12.

    [10] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, et al., “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nature Photonics, 2012, 6(2): 105–110.

    [11] Y. Wu, X. Zou, M. Sun, Z. Cao, X. Wang, S. Huo, et al., “200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors,” ACS Applied Materials & Interfaces, 2016, 8(39): 25645–25649.

    [12] T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, et al., “Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells,” ACS Nano, 2011, 5(6): 4670–4678.

    [13] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, et al., “A graphene-based broadband optical modulator,” Nature, 2011, 474(7349): 64–67.

    [14] G. Ramakrishnan, R. Chakkittakandy, and P. C. Planken, “Terahertz generation from graphite,” Optics Express, 2009, 17(18): 16092–16099.

    [15] M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical Reviews, 2010, 110(1): 132–145.

    [16] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, et al., “High efficiency graphene solar cells by chemical doping,” Nano Letters, 2012, 12(6): 2745–2750.

    [17] L. Pauling, “The nature of the chemical bond—1992,” Journal of Chemical Education, 1992, 69(7): 519.

    [18] W. Andreoni, “The physics of fullerene-based and fullerene-related materials,” Germany: Springer Science & Business Media, 2000.

    [19] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical properties of carbon nanotubes,” Singapore: World Scientific, 1998.

    [20] J.-C. Charlier, X. Blase, and S. Roche, “Electronic and transport properties of nanotubes,” Reviews of Modern Physics, 2007, 79(2): 677.

    [21] H. Petroski, “The pencil: A history of design and circumstance,” America: Alfred a Knopf Incorporated, 1992.

    [22] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., “Electric field effect in atomically thin carbon films,” Science, 2004, 306(5696): 666–669.

    [23] E. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Physical Review Letters, 2007, 98(18): 186806.

    [24] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.

    [25] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, 2009, 81(1): 109–162.

    [26] P. A. Lee and T. Ramakrishnan, “Disordered electronic systems,” Reviews of Modern Physics, 1985, 57(2): 287.

    [27] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, 2005, 438(7065): 197–200.

    [28] C. Itzykson and J. B. Zuber, “Quantum field theory,” England: Courier Corporation, 2006.

    [29] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, et al., “Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors,” Advanced Materials, 2012, 24(37): 5130–5135.

    [30] M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Advances in Physics, 2002, 51(1): 1–186.

    [31] O. Leenaerts, B. Partoens, and F. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Physical Review B, 2008, 77(12): 125416.

    [32] T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, et al., “Molecular doping of graphene,” Nano Letters, 2008, 8(1): 173–177.

    [33] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, et al., “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Letters, 2011, 11(6): 2396–2399.

    [34] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. T. Ibrahimi, et al., “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature, 2014, 506(7488): 349–354. [35 C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 2008, 321(5887): 385–388.

    [35] F. Liu, P. Ming, and J. Li, “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Physical Review B, 2007, 76(6): 064120.

    [36] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials, 2011, 10(8): 569–581.

    [37] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van Der Zande, J. M. Parpia, H. G. Craighead, et al., “Impermeable atomic membranes from graphene sheets,” Nano Letters, 2008, 8(8): 2458–2462.

    [38] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., “Fine structure constant defines visual transparency of graphene,” Science, 2008, 320(5881): 1308.

    [39] J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Applied Physics Letters, 2007, 91(16): 163513.

    [40] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, 2005, 438(7065): 201–204.

    [41] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, “Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene,” Nature, 2009, 462(7270): 192–195.

    [42] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, 2007, 6: 183–191.

    [43] M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V. I. Fal’ko, A. Bostwick, et al., “Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission,” Physical Review B, 2008, 77(19): 195403.

    [44] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, et al., “Rayleigh imaging of graphene and graphene layers,” Nano Letters, 2007, 7(9): 2711–2717.

    [45] R. A. Schultz, M. C. Jensen, and R. C. Bradt, “Single crystal cleavage of brittle materials,” International Journal of Fracture, 1994, 65(4): 291–312.

    [46] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, 2005, 438(7065): 197–200.

    [47] G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” Journal of Applied Physics, 1969, 40(10): 3946–3949.

    [48] E. Collart, A. Shukla, F. Gélébart, M. Morand, C. Malgrange, N. Bardou, et al., “Spherically bent analyzers for resonant inelastic X-ray scattering with intrinsic resolution below 200 meV,” Journal of Synchrotron Radiation, 2005, 12(4): 473–478.

    [49] J. N. Israelachvili, “Intermolecular and surface forces: revised third edition,” America: Academic Press, 2011.

    [50] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, 2008, 3(9): 563–568.

    [51] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Materials Today, 2012, 15(12): 564–589.

    [52] A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” The Journal of Physical Chemistry C, 2011, 115(13): 5422–5428.

    [53] M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactantstabilized graphene dispersions,” ACS Nano, 2010, 4(6): 3155–3162.

    [54] O. M. Maragó, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, et al., “Brownian motion of graphene,” ACS Nano, 2010, 4(12): 7515–7523.

    [55] T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, et al., “Solution-phase exfoliation of graphite for ultrafast photonics,” Physica Status Solidi (b), 2010, 247(11–12): 2953–2957.

    [56] U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, “High-concentration solvent exfoliation of graphene,” Small, 2010, 6(7): 864–871.

    [57] J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M. G. Betti, R. Cingolani, et al., “An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode,” Nano Letters, 2014, 14(8): 4901–4906.

    [58] T. Mason and D. Peters, “An introduction to the uses of power ultrasound in chemistry. in Practical Sonochemistry (Second Edition),” Sawston Cambridge: Woodhead Publishing, 2002, pp. 1–48.

    [59] L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, “Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors,” Nano Research, 2011, 4(7): 675–684.

    [60] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, et al., “Inkjet-printed graphene electronics,” ACS Nano, 2012, 6(4): 2992–3006.

    [61] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, et al., “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, 2011, 331(6017): 568–571.

    [62] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” Journal of the American Chemical Society, 2009, 131(10): 3611–3620.

    [63] H. An, W. J. Lee, and J. Jung, “Graphene synthesis on Fe foil using thermal CVD,” Current Applied Physics, 2011, 11(4): S81–S85.

    [64] Y. Xue, B. Wu, Y. Guo, L. Huang, L. Jiang, J. Chen, et al., “Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition,” Nano Research, 2011, 4(12): 1208–1214.

    [65] M. E. Ramón, A. Gupta, C. Corbet, D. A. Ferrer, H. C. Movva, G. Carpenter, et al., “CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt,” ACS nano, 2011, 5(9): 7198–7204.

    [66] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, et al., “Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire,” ACS Nano, 2010, 4(12): 7407–7414.

    [67] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al., “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters, 2008, 9(1): 30–35.

    [68] Z. Li, H. Zhu, D. Xie, K. Wang, A. Cao, J. Wei, et al., “Flame synthesis of few-layered graphene/graphite films,” Chemical Communications, 2011, 47(12): 3520–3522.

    [69] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, et al., “Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors,” Carbon, 2011, 49(13): 4204–4210.

    [70] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, et al., “Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst,” ACS Nano, 2011, 5(12): 9927–9933.

    [71] X. Chen, L. Zhang, and S. Chen, “Large area CVD growth of graphene,” Synthetic Metals, 2015, 210: 95–108.

    [72] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., “Graphene-based composite materials,” Nature, 2006, 442(7100): 282–286.

    [73] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” Journal of Materials Chemistry, 2011, 21(10): 3324–3334.

    [74] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, 2010, 5(8): 574–578.

    [75] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, et al., “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology, 2008, 19(30): 305604.

    [76] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, “Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition,” Carbon, 2004, 42(14): 2867–2872.

    [77] V. Krivchenko, V. Dvorkin, N. Dzbanovsky, M. Timofeyev, A. Stepanov, A. Rakhimov, et al., “Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge,” Carbon, 2012, 50(4): 1477–1487.

    [78] J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, et al., “Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition,” ACS Nano, 2012, 6(4): 3224–3229.

    [79] N. Petrone, C. R. Dean, I. Meric, A. M. van Der Zande, P. Y. Huang, L. Wang, et al., “Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene,” Nano Letters, 2012, 12(6): 2751–2756.

    [80] J. H. Deng, R. T. Zheng, Y. Zhao, and G. A. Cheng, “Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission,” ACS Nano, 2012, 6(5): 3727–3733.

    [81] M. I. Ionescu, X. Sun, and B. Luan, “Multilayer graphene synthesized using magnetron sputtering for planar supercapacitor application,” Canadian Journal of Chemistry, 2014, 93(2): 160–164.

    [82] D. T. Oldfield, D. G. McCulloch, C. P. Huynh, K. Sears, and S. C. Hawkins, “Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition,” Carbon, 2015, 94: 378–385.

    [83] G. Pan, B. Li, M. Heath, D. Horsell, M. L. Wears, L. Al Taan, et al., “Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films,” Carbon, 2013, 65: 349–358.

    [84] X. Dong, S. Liu, H. Song, and P. Gu, “Growth of large-area, few-layer graphene by femtosecond pulsed laser deposition with double-layer Ni catalyst,” Journal of Materials Science, 2017, 52(4): 2060–2065.

    [85] R. K. Vijayaraghavan, C. Gaman, B. Jose, A. P. McCoy, T. Cafolla, P. J. McNally, et al., “Pulsed-plasma physical vapor deposition approach toward the facile synthesis of multilayer and monolayer graphene for anticoagulation applications,” ACS Applied Materials & Interfaces, 2016, 8(7): 4878–4886.

    [86] Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, et al., “Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation,” ACS Nano, 2009, 3(2): 411–417.

    [87] Z. Ying, R. Hettich, R. Compton, and R. Haufler, “Synthesis of nitrogen-doped fullerenes by laser ablation,” Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29(21): 4935.

    [88] G. Radhakrishnan, P. Adams, and L. Bernstein, “Plasma characterization and room temperature growth of carbon nanotubes and nano-onions by excimer laser ablation,” Applied Surface Science, 2007, 253(19): 7651–7655.

    [89] A. Modabberasl, P. Kameli, M. Ranjbar, H. Salamati, and R. Ashiri, “Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field,” Carbon, 2015, 94: 485–493.

    [90] A. M. Asl, P. Kameli, M. Ranjbar, H. Salamati, and M. Jannesari, “Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films,” Superlattices and Microstructures, 2015, 81: 64–79.

    [91] H. Zhang and P. X. Feng, “Fabrication and characterization of few-layer graphene,” Carbon, 2010, 48(2): 359–364.

    [92] F. Larki, P. Kameli, H. Nikmanesh, M. Jafari, and H. Salamati, “The influence of external magnetic field on the pulsed laser deposition growth of graphene on nickel substrate at room temperature,” Diamond and Related Materials, 2019, 93: 233–240.

    [93] P. J. McNally and S. Daniels, “Pulsed plasma physical vapour deposition approach towards the facile synthesis of multilayer and monolayer graphene for anticoagulation applications,” ACS Applied Materials & Interfaces, 2016, 8(7): 4878–4886.

    [94] E. G. Acheson, “Manufacture of graphite,” in Google Patents, 1896, US568 323A.

    [95] X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, et al., “Toward clean and crackless transfer of graphene,” ACS Nano, 2011, 5(11): 9144–9153.

    [96] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, et al., “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Letters, 2009, 9(12): 4359–4363.

    [97] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, “Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices,” Applied Physics Letters, 2005, 86(7): 073104.

    [98] S. Unarunotai, Y. Murata, C. E. Chialvo, H. S. Kim, S. MacLaren, N. Mason, et al., “Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors,” Applied Physics Letters, 2009, 95(20): 202101.

    [99] J. D. Caldwell, T. J. Anderson, J. C. Culbertson, G. G. Jernigan, K. D. Hobart, F. J. Kub, et al., “Technique for the dry transfer of epitaxial graphene onto arbitrary substrates,” ACS Nano, 2010, 4(2): 1108–1114.

    [100] L. Chen, Z. Kong, S. Yue, J. Liu, J. Deng, Y. Xiao, et al., “Growth of uniform monolayer graphene using iron-group metals via the formation of an antiperovskite layer,” Chemistry of Materials, 2015, 27(24): 8230–8236.

    [101] E. Sutter, P. Albrecht, and P. Sutter, “Graphene growth on polycrystalline Ru thin films,” Applied Physics Letters, 2009, 95(13): 133109.

    [102] Y. Que, W. Xiao, X. Fei, H. Chen, L. Huang, S. Du, et al., “Epitaxial growth of large-area bilayer graphene on Ru (0001),” Applied Physics Letters, 2014, 104(9): 093110.

    [103] S. Wang, Y. Pei, X. Wang, H. Wang, Q. Meng, H. Tian, et al., “Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition,” Journal of Physics D: Applied Physics, 2010, 43(45): 455402.

    [104] J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, “Structural coherency of graphene on Ir (111),” Nano Letters, 2008, 8(2): 565–570.

    [105] C. Vo-Van, A. Kimouche, A. Reserbat-Plantey, O. Fruchart, P. Bayle-Guillemaud, N. Bendiab, et al., “Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire,” Applied Physics Letters, 2011, 98(18): 181903.

    [106] B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, “Monolayer graphene growth on sputtered thin film platinum,” Journal of Applied Physics, 2009, 106(10): 104309.

    [107] T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, and C. Kocabas, “Synthesis of graphene on gold,” Applied Physics Letters, 2011, 98(18): 183101.

    [108] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, 2009, 457(7230): 706–710.

    [109] Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, et al., “Wafer-scale synthesis and transfer of graphene films,” Nano Letters, 2010, 10(2): 490–493.

    [110] L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly (methyl methacrylate)-mediated nanotransfer printing,” Journal of the American Chemical Society, 2008, 130(38): 12612–12613.

    [111] Y. C. Lin, C. Jin, J. C. Lee, S. F. Jen, K. Suenaga, and P. W. Chiu, “Clean transfer of graphene for isolation and suspension,” ACS Nano, 2011, 5(3): 2362–2368.

    [112] J. Song, F. Y. Kam, R. Q. Png, W. L. Seah, J. M. Zhuo, G. K. Lim, et al., “A general method for transferring graphene onto soft surfaces,” Nature Nanotechnology, 2013, 8(5): 356–362.

    [113] J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, et al., “Annealing free, clean graphene transfer using alternative polymer scaffolds,” Nanotechnology, 2015, 26(5): 055302.

    [114] T. Matsumae, A. D. Koehler, T. Suga, and K. D. Hobart, “A scalable clean graphene transfer process using polymethylglutarimide as a support scaffold,” Journal of the Electrochemical Society, 2016, 163(6): E159–E161.

    [115] A. Nath, A. D. Koehler, G. G. Jernigan, V. D. Wheeler, J. K. Hite, S. C. Hernández, et al., “Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process,” Applied Physics Letters, 2014, 104(22): 224102.

    [116] J. Lee, Y. Kim, H. J. Shin, C. Lee, D. Lee, S. Lee, et al., “Crack-release transfer method of wafer-scale grown graphene onto large-area substrates,” ACS Applied Materials & Interfaces, 2014, 6(15): 12588–12593.

    [117] H. Park, P. R. Brown, V. Bulovi?, and J. Kong, “Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes,” Nano Letters, 2011, 12(1): 133–140.

    [118] Y. Han, L. Zhang, X. Zhang, K. Ruan, L. Cui, Y. Wang, et al., “Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications,” Journal of Materials Chemistry C, 2014, 2(1): 201–207.

    [119] H. J. Jeong, H. Y. Kim, S. Y. Jeong, J. T. Han, K. J. Baeg, J. Y. Hwang, et al., “Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly (methylmethacrylate) layers,” Carbon, 2014, 66: 612–618.

    [120] W. Regan, N. Alem, B. Alemán, B. Geng, ?. Girit, L. Maserati, et al., “A direct transfer of layer-area graphene,” Applied Physics Letters, 2010, 96(11): 113102.

    [121] S. Tanabe, K. Furukawa, and H. Hibino, “Etchant-free and damageless transfer of monolayer and bilayer graphene grown on SiC,” Japanese Journal of Applied Physics, 2014, 53(11): 115101.

    [122] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, “Transfer-free batch fabrication of single layer graphene transistors,” Nano Letters, 2009, 9(12): 4479–4483.

    [123] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, et al., “Direct chemical vapor deposition of graphene on dielectric surfaces,” Nano Letters, 2010, 10(5): 1542–1548.

    [124] S. J. Byun, H. Lim, G. Y. Shin, T. H. Han, S. H. Oh, J.-H. Ahn, et al., “Graphenes converted from polymers,” The Journal of Physical Chemistry Letters, 2011, 2(5): 493–497.

    [125] H. J. Shin, W. M. Choi, S. M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, et al., “Transfer-free growth of few-layer graphene by self-assembled monolayers,” Advanced Materials, 2011, 23(38): 4392–4397.

    [126] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, et al., “Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition,” Nano Letters, 2011, 11(9): 3612–3616.

    [127] K. Fujita, K. Banno, H. Aryal, and T. Egawa, “Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition,” Applied Physics Letters, 2012, 101(16): 163109.

    [128] C. Mattevi, F. Colléaux, H. Kim, Y. H. Lin, K. T. Park, M. Chhowalla, et al., “Solution-processable organic dielectrics for graphene electronics,” Nanotechnology, 2012, 23(34): 344017.

    [129] K. Banno, M. Mizuno, K. Fujita, T. Kubo, M. Miyoshi, T. Egawa, et al., “Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films,” Applied Physics Letters, 2013, 103(8): 082112.

    [130] M. Miyoshi, M. Mizuno, K. Banno, T. Kubo, T. Egawa, and T. Soga, “Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals,” Materials Research Express, 2015, 2(1): 015602.

    [131] S. M. Sze and K. K. Ng, “Physics of semiconductor devices,” New Jersey: John Wiley & Sons, 2006.

    [132] A. C. Ferrari, F. Bonaccorso, V. Fal'Ko, K. S. Novoselov, S. Roche, P. B?ggild, et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, 2015, 7(11): 4598–4810.

    [133] S. C. Dhanabalan, J. S. Ponraj, H. Zhang, and Q. Bao, “Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale, 2016, 8(12): 6410–6434.

    [134] K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, et al., “Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures,” ACS Nano, 2016, 10(3): 3852–3858.

    [135] K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nature Photonics, 2016, 10(4): 216–226.

    [136] X. Congxin and L. Jingbo, “Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides,” Journal of Semiconductors, 2016, 37(5): 051001.

    [137] K. Novoselov and A. C. Neto, “Two-dimensional crystals-based heterostructures: materials with tailored properties,” Physica Scripta, 2012, 2012(T146): 014006.

    [138] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, 2012, 6(7): 5988–5994.

    [139] M. Houssa, A. Dimoulas, and A. Molle, “2D materials for nanoelectronics,” Florida: CRC Press, 2016.

    [140] X. Chen, X. Sun, J. Jiang, Q. Liang, Q. Yang, and R. Meng, “Electrical and optical properties of germanene on single-layer BeO substrate,” The Journal of Physical Chemistry C, 2016, 120(36): 20350–20356.

    [141] R. Peale, M. Ishigami, and C. W. Smith, “Plasmonic phototransistor,” in Google Patents, 2016, US20150109606A1. [143 Y. Guo, C. Liu, H. Tanaka, and E. Nakamura, “Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light,” The Journal of Physical Chemistry Letters, 2015, 6(3): 535–539.

    [142] L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, et al., “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Communications, 2014, 5(1): 1–6.

    [143] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Applied Physics Letters, 2008, 92(4): 042116.

    [144] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, et al., “Ultrafast collinear scattering and carrier multiplication in graphene,” Nature Communications, 2013, 4(1): 1–9.

    [145] E. J. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, “Contact and edge effects in graphene devices,” Nature Nanotechnology, 2008, 3(8): 486–490.

    [146] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, et al., “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Letters, 2009, 9(3): 1039–1044.

    [147] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nature Nanotechnology, 2014, 9(10): 780–793.

    [148] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y. M. Lin, G. S. Tulevski, J. C. Tsang, et al., “Chemical doping and electron-hole conduction asymmetry in graphene devices,” Nano Letters, 2009, 9(1): 388–392.

    [149] M. C. Lemme, F. H. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, et al., “Gate-activated photoresponse in a graphene p–n junction,” Nano Letters, 2011, 11(10): 4134–4137.

    [150] E. C. Peters, E. J. Lee, M. Burghard, and K. Kern, “Gate dependent photocurrents at a graphene pn junction,” Applied Physics Letters, 2010, 97(19): 193102.

    [151] M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nature Photonics, 2013, 7(1): 53–59.

    [152] T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nature Photonics, 2010, 4(5): 297–301.

    [153] S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, and J. Robertson, “Kohn anomalies and electron-phonon interactions in graphite,” Physical Review Letters, 2004, 93(18): 185503.

    [154] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Letters, 2010, 10(2): 562–566.

    [155] N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, et al., “Hot carrier-assisted intrinsic photoresponse in graphene,” Science, 2011, 334(6056): 648–652.

    [156] M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Letters, 2013, 13(4): 1644–1648.

    [157] P. Richards, “Bolometers for infrared and millimeter waves,” Journal of Applied Physics, 1994, 76(1): 1–24.

    [158] H. Maruska, M. Hicks, T. Moustakas, and R. Friedman, “Optically controlled amorphous silicon photosensitive device,” IEEE Transactions on Electron Devices, 1984, 31(9): 1343–1345.

    [159] J. Hou and S. Fonash, “Quantum efficiencies greater than unity: a computer study of a photogating effect in amorphous silicon p-i-n devices,” Applied Physics Letters, 1992, 61(2): 186–188.

    [160] M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Physical Review Letters, 1993, 71(15): 2465.

    [161] M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Transactions on Electron Devices, 1996, 43(3): 380–387.

    [162] A. Tomadin and M. Polini, “Theory of the plasma-wave photoresponse of a gated graphene sheet,” Physical Review B, 2013, 88(20): 205426.

    [163] A. Muraviev, S. Rumyantsev, G. Liu, A. Balandin, W. Knap, and M. Shur, “Plasmonic and bolometric terahertz detection by graphene field-effect transistor,” Applied Physics Letters, 2013, 103(18): 181114.

    [164] K. Y. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, “Far-infrared graphene plasmonic crystals for plasmonic band engineering,” Nano Letters, 2014, 14(5): 2479–2484.

    [165] L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology, 2015, 27(3): 035205.

    [166] T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Physical Review B, 2009, 79(24): 245430.

    [167] J. Park, Y. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Letters, 2009, 9(5): 1742–1746.

    [168] T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, et al., “Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Letters, 2014, 14(7): 3733–3742.

    [169] X. Cai, R. J. Suess, H. D. Drew, T. E. Murphy, J. Yan, and M. S. Fuhrer, “Pulsed near-IR photoresponse in a Bi-metal contacted graphene photodetector,” Scientific Reports, 2015, 5: 14803.

    [170] S. Schuler, D. Schall, D. Neumaier, L. Dobusch, O. Bethge, B. Schwarz, et al., “Controlled generation of a p–n junction in a waveguide integrated graphene photodetector,” Nano Letters, 2016, 16(11): 7107–7112.

    [171] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, et al., “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nature Nanotechnology, 2014, 9(10): 814–819.

    [172] D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, et al., “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nature Nanotechnology, 2012, 7(2): 114–118.

    [173] L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, and A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nature Communications, 2012, 3(1): 1–7.

    [174] T. Mueller, M. Furchi, A. Urich, and A. Pospischil, “Metal-graphene-metal photodetectors,” in SPIE LASE, California, 2013, pp. 86001H.

    [175] T. Limmer, J. Feldmann, and E. Da Como, “Carrier lifetime in exfoliated few-layer graphene determined from intersubband optical transitions,” Physical Review Letters, 2013, 110(21): 217406.

    [176] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, et al., “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Letters, 2008, 8(12): 4248–4251.

    [177] A. Di Bartolomeo, “Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction,” Physics Reports, 2016, 606: 1–58.

    [178] X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Letters, 2013, 13(3): 909–916.

    [179] T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, et al., “Strong plasmonic enhancement of photovoltage in graphene,” Nature Communications, 2011, 2(1): 1–5. 182] M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, et al., “Microcavity-integrated graphene photodetector,” Nano Letters, 2012, 12(6): 2773–2777.

    [180] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, et al., “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nature Communications, 2016, 7(1): 1–8.

    [181] S. Y. Chen, Y. Y. Lu, F. Y. Shih, P. H. Ho, Y. F. Chen, C. W. Chen, et al., “Biologically inspired graphene-chlorophyll phototransistors with high gain,” Carbon, 2013, 63: 23–29.

    [182] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. De Arquer, et al., “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnology, 2012, 7(6): 363–368.

    [183] P. Afzali, Y. Abdi, and E. Arzi, “Gated graphene/titanium dioxide-based photodetector,” Journal of Nanoparticle Research, 2014, 16(10): 2659.

    [184] A. Hu, H. Tian, Q. Liu, L. Wang, L. Wang, X. He, et al., “Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors,” Advanced Optical Materials, 2019, 7(8): 1801792.

    [185] C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science, 2016, 353(6302): aac5523.

    [186] C. Giansante, I. Infante, E. Fabiano, R. Grisorio, G. P. Suranna, and G. Gigli, “'Darker-than-Black' PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands,” Journal of the American Chemical Society, 2015, 137(5): 1875–1886.

    [187] W. Guo, S. Xu, Z. Wu, N. Wang, M. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small, 2013, 9(18): 3031–3036.

    [188] B. Martín-García, A. Polovitsyn, M. Prato, and I. Moreels, “Efficient charge transfer in solution-processed PbS quantum dot-reduced graphene oxide hybrid materials,” Journal of Materials Chemistry C, 2015, 3(27): 7088–7095.

    [189] C. W. Chiang, G. Haider, W. C. Tan, Y. R. Liou, Y. C. Lai, R. Ravindranath, et al., “Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots,” ACS Applied Materials & Interfaces, 2016, 8(1): 466–471.

    [190] S. Darbari, V. Ahmadi, P. Afzali, and Y. Abdi, “Photocatalytic reduction of GO/ZnO to achieve GNRs for optoelectronic applications,” Journal of Physics D: Applied Physics, 2013, 46(38): 385101.

    [191] S. Darbari, V. Ahmadi, P. Afzali, Y. Abdi, and M. Feda, “Reduced graphene oxide/ZnO hybrid structure for high-performance photodetection,” Journal of Nanoparticle Research, 2014, 16(12): 2798.

    [192] K. B. Ko, B. D. Ryu, M. Han, C. H. Hong, D. A. Dinh, and T. V. Cuong, “Multidimensional graphene and ZnO-based heterostructure for flexible transparent ultraviolet photodetector,” Applied Surface Science, 2019, 481: 524–530.

    [193] J. E. Muench, A. Ruocco, M. A. Giambra, V. Miseikis, D. Zhang, J. Wang, et al., “Waveguide-integrated, plasmonic enhanced graphene photodetectors,” Nano Letters, 2019, 19(11): 7632–7644.

    [194] J. Li, C. Zhao, B. Liu, C. You, F. Chu, N. Tian, et al., “Metamaterial grating-integrated graphene photodetector with broadband high responsivity,” Applied Surface Science, 2019, 473: 633–640.

    [195] B. N. Shivananju, X. Bao, W. Yu, J. Yuan, H. Mu, T. Sun, et al., “Graphene heterostructure integrated optical fiber Bragg grating for light motion tracking and ultrabroadband photodetection from 400 nm to 10.768 μm,” Advanced Functional Materials, 2019, 29(19): 1807274

    [196] X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, et al., “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Letters, 2012, 12(11): 5626–5631.

    [197] F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, et al., “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano, 2010, 4(10): 5617–5626.

    [198] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/siliconheterostructure waveguide photodetectors,” Nature Photonics, 2013, 7(11): 888–891.

    [199] A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, et al., “CMOS-compatible graphene photodetector covering all optical communication bands,” Nature Photonics, 2013, 7(11): 892–896.

    [200] S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, et al., “GeSn pin photodetector for all telecommunication bands detection,” Optics Express, 2011, 19(7): 6400–6405.

    [201] D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth larger than 76 GHz fabricated in a 6 inch wafer process line,” Journal of Physics D: Applied Physics, 2017, 50(12): 124004.

    [202] D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Advanced Materials, 2011, 23(13): 1482–1513.

    [203] S. De, C. S. Boland, P. J. King, S. Sorel, M. Lotya, U. Patel, et al., “Transparent conducting films from NbSe3 nanowires,” Nanotechnology, 2011, 22(28): 285202.

    [204] M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Review of Scientific Instruments, 1998, 69(11): 3755–3762.

    [205] F. Withers, T. H. Bointon, M. F. Craciun, and S. Russo, “All-graphene photodetectors,” ACS Nano, 2013, 7(6): 5052–5057.

    [206] D. Zhan, L. Sun, Z. H. Ni, L. Liu, X. F. Fan, Y. Wang, et al., “FeCl3-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping,” Advanced Functional Materials, 2010, 20(20): 3504–3509.

    [207] S. Sato, H. Ichikawa, N. Iwata, and H. Yamamoto, “Synthesis and characterization of intercalated few-layer graphenes,” Japanese Journal of Applied Physics, 2014, 53(2S): 02BD04.

    [208] W. Zhao, P. H. Tan, J. Liu, and A. C. Ferrari, “Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability,” Journal of the American Chemical Society, 2011, 133(15): 5941–5946.

    [209] J. Warmuth, A. Bruix, M. Michiardi, T. H?nke, M. Bianchi, J. Wiebe, et al., “Band-gap engineering by Bi intercalation of graphene on Ir (111),” Physical Review B, 2016, 93(16): 165437.

    [210] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, et al., “Novel highly conductive and transparent graphene-based conductors,” Advanced Materials, 2012, 24(21): 2844–2849.

    [211] A. De Sanctis, G. F. Jones, D. J. Wehenkel, F. Bezares, F. H. Koppens, M. F. Craciun, et al., “Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors,” Science Advances, 2017, 3(5): e1602617.

    [212] S. Wang, Y. Sekine, S. Suzuki, F. Maeda, and H. Hibino, “Photocurrent generation of a single-gate graphene p–n junction fabricated by interfacial modification,” Nanotechnology, 2015, 26(38): 385203.

    [213] M. Kim, S. M. Choi, H. A. Yoon, S. K. Choi, J. U. Lee, J. Kim, et al., “Photocurrent generation at ABA/ABC lateral junction in tri-layer graphene photodetector,” Carbon, 2016, 96: 454–458.

    [214] C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, et al., “Raman characterization of ABA-and ABC-stacked trilayer graphene,” ACS Nano, 2011, 5(11): 8760–8768.

    [215] S. H. Cheng, T. M. Weng, M. L. Lu, W. C. Tan, J. Y. Chen, and Y. F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Scientific Reports, 2013, 3: 2694.

    [216] V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, “Luminscent graphene quantum dots for organic photovoltaic devices,” Journal of the American Chemical Society, 2011, 133(26): 9960–9963.

    [217] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, et al., “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Advanced Materials, 2011, 23(6): 776–780.

    [218] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, et al., “Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission,” Rsc Advances, 2012, 2(7): 2717–2720.

    [219] V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, et al., “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Letters, 2009, 9(5): 1949–1955.

    [220] P. J. King, U. Khan, M. Lotya, S. De, and J. N. Coleman, “Improvement of transparent conducting nanotube films by addition of small quantities of graphene,” ACS Nano, 2010, 4(7): 4238–4246.

    [221] X. Yu, Z. Dong, J. K. Yang, and Q. J. Wang, “Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C60 hybrid nanostructure,” Optica, 2016, 3(9): 979–984.

    [222] Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD—grown graphene and PbS quantum dots with ultrahigh responsivity,” Advanced Materials, 2012, 24(43): 5878–5883.

    [223] D. Zhang, L. Gan, Y. Cao, Q. Wang, L. Qi, and X. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Advanced Materials, 2012, 24(20): 2715–2720.

    [224] S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Letters, 2012, 12(8): 3887–3892.

    [225] J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, et al., “Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Advanced Materials, 2013, 25(34): 4723–4728.

    [226] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, et al., “Broadband high photoresponse from pure monolayer graphene photodetector,” Nature Communications, 2013, 4(1): 1811.

    [227] S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, et al., “A broadband fluorographene photodetector,” Advanced Materials, 2017, 29(22): 1700463.

    [228] O. Leenaerts, H. Peelaers, A. Hernández-Nieves, B. Partoens, and F. Peeters, “First-principles investigation of graphene fluoride and graphane,” Physical Review B, 2010, 82(19): 195436.

    Farhad LARKI, Yaser ABDI, Parviz KAMELI, Hadi SALAMATI. An Effort Towards Full Graphene Photodetectors[J]. Photonic Sensors, 2022, 12(1): 31
    Download Citation