[1] SU Yi, WAN Min. High Energy Laser System[M]. Beijing : National Defense Industry Press, 2004. (in Chinese)
[2] Duorui GAO, Qiang FU, Zhao ZHAO. Optimal selection of receiving optical power in laser communication system in atmospheric turbulence. Laser & Optoelectronics Progress, 51, 50601-44(2014).
[3] Yang LI, Libin XIANG, Wenxi ZHANG. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy. High Power Laser and Particle Beams, 25, 292-296(2013).
[4] F G GEBHARDT. High power laser propagation. Applied Optics, 15, 1479-1493(1976).
[5] RAO R Z. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)
[6] Wenyue ZHU, Xianmei QIAN, Ruizhong RAO et al. Evaluation technology of high energy laser atmospheric propagation performance. Infrared and Laser Engineering, 48, 1203002(2019).
[7] BARTELL R J, PERRAM G P, FIINO S T, et al. Methodology f comparing wldwide perfmance of diverse weightconstrained high energy laser systems[C]Proceedings of SPIE, 2005, 5792: 7687.
[8] H MA, P ZHANG, J ZHANG et al. A fast calculation method of far-field intensity distribution with point spread function convolution for high energy laser propagation. Applied Sciences, 11, 4450(2021).
[9] Zandt N R VAN, S T FIORINO, K J KEEFER. Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation. Optics Express, 21, 14789-14798(2013).
[10] Chunhong QIAO, Chengyu FAN, Yinbo HUANG et al. Scaling laws of high energy laser propagation through atmosphere. Chinese Journal of Lasers, 37, 433-437(2010).
[11] Y WANG, S BASU. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa Hawaii. Optics Letters, 41, 2334-2337(2016).
[12] Zhe TAN, Yanchun GONG, Yuntao YANG et al. A simulation study on atmospheric transmission effect evaluation of laser based on random forest. Laser & Infrared, 52, 23-28(2022).
[13] S A SHAKIR, T T CLARK, D S CARGILL et al. Far-field propagation of partially coherent laser light in random mediums. Optics Express, 26, 15609-15622(2018).
[14] Qi GUAN, Taijiao DU, Zhihua CHEN et al. Estimation of far-field parameters of truncated gauss beams. Modern Applied Physics, 13, 30301-30301(2022).
[15] X W CHEN, W Y ZHU, X M QIAN et al. Scale model of focused gaussian beam propagating in turbulent atmosphere. Chinese Journal of Lasers, 50, 2205001(2023).
[16] Kun LENG, Yuntao YANG, Zhe TAN et al. Evaluation method of laser atmospheric propagation efficiency based on support vector machine. Chinese Journal of Quantum Electronics, 37, 547-555(2020).
[17] LI H. Machine Learning Method[M]. Beijing: Tsinghua University Press, 2022: 1445. (in Chinese)
[18] Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
[19] QI M. LightGBM: A highly efficient gradient boosting decision tree[C]31st Conference on Neural Infmation Processing Systems (NeurIPS 2017), 2017: 3149–3157.
[20] ZHANG A, LIPTON A C, LI M, et al. Dive Into Deep Learning[M]. Beijing: Posts & Telecom Press, 2023: 391432. (in Chinese)
[21] Y W HU, X LIU, C F KUANG et al. Research progress and prospect of adaptive optics based on deep learning. Chinese Journal of Lasers, 50, 1101009(2023).
[22] YURY Gishniy, IVAN Rubachev, et al. Revisiting deep learning models f tabular data[C]35th Conference on Neural Infmation Processing Systems (NeurIPS 2021), 2021: 1893218943.
[23] AKIBA T, SANO S, YANASE T, et al. Optuna: A nextgeneration hyperparameter optimization framewk[C]Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2623–2631.