• Infrared and Laser Engineering
  • Vol. 53, Issue 9, 20240231 (2024)
Xun CUI1,2,3, Xiaowei CHEN2,3,4,*, Xianmei QIAN2,3,4, Wenyue ZHU2,3,4..., Pengfei WU2,3,4, Lingyun MIN2,3 and Ruizhong RAO1,2,3,4|Show fewer author(s)
Author Affiliations
  • 1School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
  • 2Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • 3Anhui Laboratory of Advanced Laser Technology, Hefei 230037, China
  • 4Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20240231 Cite this Article
    Xun CUI, Xiaowei CHEN, Xianmei QIAN, Wenyue ZHU, Pengfei WU, Lingyun MIN, Ruizhong RAO. Study of fast calculation method of far-field radius for laser propagation through turbulent atmosphere[J]. Infrared and Laser Engineering, 2024, 53(9): 20240231 Copy Citation Text show less
    References

    [1] SU Yi, WAN Min. High Energy Laser System[M]. Beijing : National Defense Industry Press, 2004. (in Chinese)

    [2] Duorui GAO, Qiang FU, Zhao ZHAO. Optimal selection of receiving optical power in laser communication system in atmospheric turbulence. Laser & Optoelectronics Progress, 51, 50601-44(2014).

    [3] Yang LI, Libin XIANG, Wenxi ZHANG. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy. High Power Laser and Particle Beams, 25, 292-296(2013).

    [4] F G GEBHARDT. High power laser propagation. Applied Optics, 15, 1479-1493(1976).

    [5] RAO R Z. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)

    [6] Wenyue ZHU, Xianmei QIAN, Ruizhong RAO et al. Evaluation technology of high energy laser atmospheric propagation performance. Infrared and Laser Engineering, 48, 1203002(2019).

    [7] BARTELL R J, PERRAM G P, FIINO S T, et al. Methodology f comparing wldwide perfmance of diverse weightconstrained high energy laser systems[C]Proceedings of SPIE, 2005, 5792: 7687.

    [8] H MA, P ZHANG, J ZHANG et al. A fast calculation method of far-field intensity distribution with point spread function convolution for high energy laser propagation. Applied Sciences, 11, 4450(2021).

    [9] Zandt N R VAN, S T FIORINO, K J KEEFER. Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation. Optics Express, 21, 14789-14798(2013).

    [10] Chunhong QIAO, Chengyu FAN, Yinbo HUANG et al. Scaling laws of high energy laser propagation through atmosphere. Chinese Journal of Lasers, 37, 433-437(2010).

    [11] Y WANG, S BASU. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa Hawaii. Optics Letters, 41, 2334-2337(2016).

    [12] Zhe TAN, Yanchun GONG, Yuntao YANG et al. A simulation study on atmospheric transmission effect evaluation of laser based on random forest. Laser & Infrared, 52, 23-28(2022).

    [13] S A SHAKIR, T T CLARK, D S CARGILL et al. Far-field propagation of partially coherent laser light in random mediums. Optics Express, 26, 15609-15622(2018).

    [14] Qi GUAN, Taijiao DU, Zhihua CHEN et al. Estimation of far-field parameters of truncated gauss beams. Modern Applied Physics, 13, 30301-30301(2022).

    [15] X W CHEN, W Y ZHU, X M QIAN et al. Scale model of focused gaussian beam propagating in turbulent atmosphere. Chinese Journal of Lasers, 50, 2205001(2023).

    [16] Kun LENG, Yuntao YANG, Zhe TAN et al. Evaluation method of laser atmospheric propagation efficiency based on support vector machine. Chinese Journal of Quantum Electronics, 37, 547-555(2020).

    [17] LI H. Machine Learning Method[M]. Beijing: Tsinghua University Press, 2022: 1445. (in Chinese)

    [18] Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)

    [19] QI M. LightGBM: A highly efficient gradient boosting decision tree[C]31st Conference on Neural Infmation Processing Systems (NeurIPS 2017), 2017: 3149–3157.

    [20] ZHANG A, LIPTON A C, LI M, et al. Dive Into Deep Learning[M]. Beijing: Posts & Telecom Press, 2023: 391432. (in Chinese)

    [21] Y W HU, X LIU, C F KUANG et al. Research progress and prospect of adaptive optics based on deep learning. Chinese Journal of Lasers, 50, 1101009(2023).

    [22] YURY Gishniy, IVAN Rubachev, et al. Revisiting deep learning models f tabular data[C]35th Conference on Neural Infmation Processing Systems (NeurIPS 2021), 2021: 1893218943.

    [23] AKIBA T, SANO S, YANASE T, et al. Optuna: A nextgeneration hyperparameter optimization framewk[C]Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2623–2631.

    Xun CUI, Xiaowei CHEN, Xianmei QIAN, Wenyue ZHU, Pengfei WU, Lingyun MIN, Ruizhong RAO. Study of fast calculation method of far-field radius for laser propagation through turbulent atmosphere[J]. Infrared and Laser Engineering, 2024, 53(9): 20240231
    Download Citation