• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0830002 (2021)
Jie Liu1, Gang Liu1、*, Shujie Li1, Ziang Deng1, Quanhong Ou1, and Youming Shi2
Author Affiliations
  • 1School of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan 650500, China
  • 2School of Physics and Electronic Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
  • show less
    DOI: 10.3788/LOP202158.0830002 Cite this Article Set citation alerts
    Jie Liu, Gang Liu, Shujie Li, Ziang Deng, Quanhong Ou, Youming Shi. Infrared Spectroscopy Identification of Artificially Aging Wheat Seeds[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0830002 Copy Citation Text show less
    References

    [1] Zhang S B, Lü Y Y, Wang Y L et al. Physiochemical changes in wheat of different hardnesses during storage[J]. Journal of Stored Products Research, 72, 161-165(2017).

    [2] Tian P P, Lü Y Y, Yuan W J et al. Effect of artificial aging on wheat quality deterioration during storage[J]. Journal of Stored Products Research, 80, 50-56(2019).

    [3] Wang Y J, Wu W, Guo Z J et al. Effects of aging treatment on germination index and root system of wheat[J]. Journal of Nuclear Agricultural Sciences, 32, 2423-2430(2018).

    [4] Wu J Z, Li H, Zhang H D et al. Nondestructive determination of natural aging stage of wheat seeds using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 39, 751-755(2019).

    [5] Xia Y, Xu Y F, Li J B et al. Recent advances in emerging techniques for non-destructive detection of seed viability: a review[J]. Artificial Intelligence in Agriculture, 1, 35-47(2019).

    [6] Kusumaningrum D, Lee H, Lohumi S et al. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy[J]. Journal of the Science of Food and Agriculture, 98, 1734-1742(2018).

    [7] Jia L Q, Qi H N, Hu W J et al. Rapid nondestructive grading detection of maize seed vigor using TDLAS technique[J]. Chinese Journal of Lasers, 46, 0911002(2019).

    [8] Umut H, Mamat S, Ma C Y et al. Hyperspectral estimation of wheat leaf water content using fractional differentials and successive projection algorithm-back propagation neural network[J]. Laser & Optoelectronics Progress, 56, 153002(2019).

    [9] Zhang T T, Wei W S, Zhao B et al. A reliable methodology for determining seed viability by using hyperspectral data from two sides of wheat seeds[J]. Sensors (Basel, Switzerland), 18, E813(2018).

    [10] Ambrose A, Lohumi S, Lee W H et al. Comparative nondestructive measurement of corn seed viability using Fourier transform near-infrared (FT-NIR) and Raman spectroscopy[J]. Sensors and Actuators B: Chemical, 224, 500-506(2016).

    [11] Men S, Yan L, Liu J et al. A classification method for seed viability assessment with infrared thermography[J]. Sensors (Basel, Switzerland), 17, 845(2017).

    [12] Ahmed M R, Yasmin J, Collins W et al. X-ray CT image analysis for morphology of muskmelon seed in relation to germination[J]. Biosystems Engineering, 175, 183-193(2018).

    [13] Xu L R, Zhu X F, Chen X M et al. Direct FTIR analysis of isolated trans fatty acids in edible oils using disposable polyethylene film[J]. Food Chemistry, 185, 503-508(2015).

    [14] Guo X X, Hu W, Liu Y et al. Rapid determination and chemical change tracking of benzoyl peroxide in wheat flour by multi-step IR macro-fingerprinting[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 123-129(2016).

    [15] Yang W M, Liu G, Ou Q H et al. Infrared spectroscopy of naturally aged legume seeds[J]. Laser & Optoelectronics Progress, 55, 123001(2018).

    [16] Yang W M, Liu G, Lin H J et al. Discrimination of grain seeds of natural aging by two-dimensional infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 3041-3047(2018).

    [17] Czekus B, Pećinar I, Petrović I et al. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca cvs. of quinoa seed microstructure and perisperm characterization[J]. Journal of Cereal Science, 87, 25-30(2019).

    [18] de Girolamo A, von Holst C, Cortese M et al. Rapid screening of ochratoxin A in wheat by infrared spectroscopy[J]. Food Chemistry, 282, 95-100(2019).

    [19] Shi Y M, Li D Y, Yi S L et al. Infrared spectroscopy analysis of biochemical changes of corn leaves infected by southern corn leaf blight disease[J]. Laser & Optoelectronics Progress, 56, 083002(2019).

    [20] Sun C Y, Chen X, Zhang Z P et al. Effects of seed aging on the quality of wheat seeds[J]. Seed, 34, 88-90(2015).

    [21] Chen Y, Huang J F, Yeap Z Q et al. Rapid authentication and identification of different types of a. roxburghii by tri-step FT-IR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 271-282(2018).

    [22] Wei W, Yan Y, Zhang X P et al. Enhanced chemical and spatial recognition of fish bones in surimi by tri-step infrared spectroscopy and infrared microspectroscopic imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 186-192(2018).

    [23] Ren J, Liu G, Ou Q H et al. Starch discrimination with Fourier transform infrared spectroscopy(FTIR) and two-dimensional correlation infrared spectroscopy(2D-IR)[J]. Chinese Agricultural Science Bulletin, 31, 58-64(2015).

    [24] Genkawa T, Ahamed T, Noguchi R et al. Simple and rapid determination of free fatty acids in brown rice by FTIR spectroscopy in conjunction with a second-derivative treatment[J]. Food Chemistry, 191, 7-11(2016).

    [25] Fu J R. Seed physiology[M], 335-375(1985).

    [26] Zhang Z Y, Jiang X L, Ru Z G et al. Effects of artificial aging on physiological characteristics and vigor of hybrid wheat seeds[J]. Jiangsu Agricultural Sciences, 41, 81-83(2013).

    Jie Liu, Gang Liu, Shujie Li, Ziang Deng, Quanhong Ou, Youming Shi. Infrared Spectroscopy Identification of Artificially Aging Wheat Seeds[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0830002
    Download Citation