• Acta Photonica Sinica
  • Vol. 40, Issue 4, 487 (2011)
ZHANG Jian-guo* and LIU Yuan-shan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Jian-guo, LIU Yuan-shan. Development of Ultra-wide Bandwidth All-optical Sampling Oscilloscope Equipment[J]. Acta Photonica Sinica, 2011, 40(4): 487 Copy Citation Text show less
    References

    [1] SARUWATARI M. All-optical signal processing for terabit/second optical transmission[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6): 1363-1374.

    [2] NAKAZAWA M, YAMAMOTO T, TAMURA K R. 1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator[J]. Electronics Letters, 2000, 36(24): 2027-2029.

    [3] WEBER H G, FERBER S, KROH M, et al. Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission[J]. Electronics Letters, 2006, 42(3): 178-179.

    [4] SCHMIDT-LANGHORST C, LUDWIG R, HU H, et al. Single-channel 1-Tb/s transmission over 480 km DMF for future terabit Ethernet systems[C]. Proc Optical Fiber Commun Conf, 2009: OTuN5.

    [5] HANSEN MULVAD H C, OXENLOWE L K, GALILI M, et al. 1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing[J]. Electronics Letters, 2009, 45(5): 280-281.

    [6] FEISTE U, LUDWIG R, SCHUBERT C, et al. 160Gbit/s transmission over 116 km field-installed fibre using 160Gbit/s OTDM and 40Gbit/s ETDM[J]. Electronics Letters, 2001, 37(7): 443-445.

    [7] BUCHALI F, BAUMERT W, BULOW H, et al. Eye monitoring in a 160 Gbit/s RZ field transmission system[C]. Proc 27th Eur Conf on Opt Comm, 30 Sept.-4 Oct. 2001, Amsterdam, The Netherlands, 2001: 288-289.

    [8] TURKIEWICZ J P, TANGDIONGGA E, KHOE G D, et al. Field trial of 160Gbit/s OTDM add/drop node in a link of 275 km deployed fiber[C]. Proc Optical Fiber Commun Conf, 2004, Los Angeles, CA, 2004: PDP1.

    [9] TURKIEWICZ J P, TANGDIONGGA E, LEHMANN G, et al. 160 Gb/s OTDM networking using deployed fiber[J]. Journal of Lightwave Technology, 2005, 23(1): 225-235.

    [10] LEHMANN G, SCHAIRER W, ROHDE H, et al. 160 Gbit/s OTDM transmission field trial over 550 km of legacy SSMF[C]. Proc Eur Conf on Opt Comm, Sept. 2004, Stockholm, Sweden.

    [11] KIECKBUSCH S, FERBER S, ROSENFELDT H, et al. Adaptive PMD compensator in 160Gb/s DPSK transmission over installed fiber[C]. Proc Optical Fiber Commun Conf, 2004: PDP31.

    [12] VORBECK S, SCHMIDT M, LEPPLA R, et al. Long haul field transmission experiment of 8X170 Gbit/s over 421 km installed legacy SSMF fiber infrastructure[C]. Proc Eur Conf on Opt Comm, 2005: 433-435.

    [13] LEPPLA R, VORBECK S, SCHMIDT M, et al. PMD tolerance of 8X170 Gbit/s field transmission experiment over 430 km SSMF with and without PMDC[C]. Proc Optical Fiber Commun Conf, 2005: OFF2.

    [14] DAIKOKU M, MIYAZAKI T, MORITA I, et al. 160 Gbit/s-based field transmission experiments with single-polarization RZ-DPSK signals and simple PMD compensator[C]. Proc Eur Conf on Opt Comm, 2005: 375-378.

    [15] KANDA Y, MURAI H, KAGAWA M, et al. Highly stable 160-Gb/s field transmission employing adaptive PMD compensator with ultra high time-resolution variable DGD generator[C]. Eur Conf on Opt Comm, 21-25 September 2008, Brussels, Belgium, 2008, 3:207-208.

    [16] MIYAZAKI T. Ultrafast 160 Gb/s-based transmission experiment on JGNII[J]. J National Inst Inform & Commun Technol, 2005, 52: 31-36.

    [17] MURAI H, KAGAWA M, TSUJI H, et al. EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 70-78.

    [18] OKAZAKI M, GUAN P, HIROOKA T, et al. 160-Gb/s 200-km field transmission experiment with large PMD using a time-domain optical Fourier transformation technique[J]. IEEE Photon Technol Lett, 2008, 20(24): 2192-2194.

    [19] DAIKOKU M, MIYAZAKI T, MORITA I, , et al. 160 Gb/s-based field transmission experiments using polarizer-based PMD compensator with optical power Monitor[J]. J Lightwave Technol, 2009, 27(5): 451-461.

    [20] OTANI Y. TSUDA K. IGAWA F, et al. Demonstration of far-end 160-Gb/s waveform measurement after 508-km transmission in field trial without traditional clock recovery[C]. Proc Eur Conf on Opt Commun, 24-28 Sept. 2006: 1-2.

    [21] FUJII K. Development of an ultra high-speed optical signal processing technology[J]. Oki Technical Review, 2005, 72(4): 70-75.

    [22] MURAI H, KANDA Y, KAGAWA M, et al. Field demonstration of 160-Gb/s all-optical 3R regeneration[R]. Technical Report of IEICE, Jan. 26, 2009: 91-96.

    [23] MURAI H, KANDA Y, KAGAWA M, et al. Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation[J]. J Lightwave Technol, 2010, 28(6): 910-921.

    [24] DORREN H J S, HERRERA J, RAZ O, et al. All-optical devices for ultrafast packet switching[C]. Proc 20th Annual Meeting of IEEE LEOS, 21-25 Oct. 2007: 729-730.

    [25] HANSEN MULVAD H C, TANGDIONGGA E, RAZ O, et al. 640 Gbit/s OTDM lab-transmission and 320 Gbit/s field-transmission with SOA-based clock recovery[C]. Proc Optical Fiber Commun Conf, 2008: OWS2.

    [26] WINZER P J, RAYBON G, DUELK M. 107-Gb/s optical ETDM transmitter for 100G Ethernet transport[C]. Proc Eur Conf on Opt Commun, 25-29 Sept. 2005, 6: Th4.1.1.

    [27] RAYBON G, WINZER P J, DOERR C R. 10 x 107-Gbit/s electronically multiplexed and optically equalized NRZ transmission over 400 km[C]. Proc Optical Fiber Commun Conf, 2006: PDP32.

    [28] SCHUBERT C, DERKSEN R H, MOLLER M, et al. Integrated 100-Gb/s ETDM receiver[J]. J Lightwave Technol, 2007, 25(1): 122-130.

    [29] SINSKY J H, ADAMIECKI A, BUHL L, et al. A 107-Gbit/s optoelectronic receiver utilizing hybrid integration of a photodetector and electronic demultiplexer[J]. J Lightwave Technol, 2008, 26(1): 114-119.

    [30] DAIKOKU M, MORITA I, TAGA H, et al. 100-Gb/s DQPSK transmission experiment without OTDM for 100G Ethernet transport[J]. J Lightwave Technol, 2007, 25(1): 139-145.

    [31] WELLBROCK G, XIA T J, LEE W, et al. Field trial of 107-Gb/s channel carrying live video traffic over 504 km in-service DWDM route[C]. Proc IEEE LEOS 2008: 477-478.

    [32] FAURE J P, LAVIGNE B, BRESSON C, et al. 40G and 100G deployment on 10G infrastructure: market overview and trends, coherent versus conventional technology[C]. Proc Optical Fiber Commun Conf, 2010: OThE3.

    [33] BIRK M, GERARD P, CURTO R, et al. Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link[C]. Proc Optical Fiber Commun Conf, 2010: PDPD1.

    [34] CHARLET G, RENAUDIER J, MARDOYAN H, et al. Transmission of 16.4Tbit/s capacity over 2, 550km using PDM QPSK modulation format and coherent receiver[C]. Proc Optical Fiber Commun Conf, 2008: PDP3.

    [35] ZHOU X, YU J, HUANG M F, et al. Transmission of 32-Tb/s capacity over 580 km using RZ-shaped PDM-8QAM modulation format and cascaded multimodulus blind equalization algorithm[J]. J Lightwave Technol, 2010, 28(4): 456-465.

    [36] ZHOU X, YU J, HUANG M F, et al. 64-Tb/s (640x107-Gb/s) PDM-36QAM transmission over 320km using both pre- and post-transmission digital equalization[C]. Proc Optical Fiber Commun Conf, 2010: PDPB9.

    [37] SANO A, MASUDA H, KOBAYASHI T, et al. 69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection[C]. Proc Optical Fiber Commun Conf, 2010: PDPB7.

    [38] SCHMIDT-LANGHORST C, LUDWIG R, GROΒ D D, et al. Generation and coherent time-division demultiplexing of up to 5.1 Tb/s single-channel 8-PSK and 16-QAM signals[C]. Proc Optical Fiber Commun Conf, 2009: PDPC6.

    [39] GALILI M, HANSEN MULVAD H C, OXENLOWE L K, et al. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarization multiplexing[C]. Proc Optical Fiber Commun Conf, 2010: OThV2.

    [40] JI H, HU H, GALILI M, et al. Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a silicon nanowire[C]. Proc Optical Fiber Commun Conf, 2010: PDPC7.

    [41] VO T D, HU H, GALILI M, et al. Photonic chip based 1.28 Tbaud transmitter optimization and receiver OTDM demultiplexing[C]. Proc Optical Fiber Commun Conf, 2010: PDPC5.

    [42] LIU Yuan-shan, ZHANG Jian-Guo, TANG Ding-kang, et al. Brief report on prototype of an ultra-wideband optical sampling oscilloscope[J]. Chinese Journal of Lasers, 2009, 36(10): 2744.

    [43] TANG Ding-kang, ZHANG Jian-Guo, LIU Yuan-shan, et al. Ultrashort optical pulse monitoring using asynchronous optical sampling technique in highly nonlinear fiber[J]. Chinese Optics Letters, 2010, 8(7): 630-633.

    [44] WESTLUND M, ANDREKSON P A, SUNNERUD H, et al. High-performance optical-fiber-nonlinearity-based optical waveform monitoring[J]. J Lightwave Technol, 2005, 23(6): 2012-2022.

    [45] KAWANISHI S, TAKARA H, UCHIYAMA K, et al. Fully time-division-multiplexed 100 Gbit/s optical transmission experiment[J]. Electronics Letters, 1993, 29(25): 2211-2212.

    [46] KAWANISHI S, TAKARA H, UCHIYAMA K, et al. 100 Gbit/s, 50 km, and nonrepeated optical transmission employing all-optical multi/demultiplexing and PLL timing extraction[J]. Electronics Letters, 1993, 29(12): 1075-1077.

    [47] NELSON B P, DORAN N J. Optical sampling oscilloscope using nonlinear fibre loop mirror[J]. Electronics Letters, 1991, 27(3): 204-205.

    [48] ANDREKSON P A. Picosecond optical sampling using four-wave mixing in fibre[J]. Electronics Letters, 1991, 27(16): 1440-1441.

    [49] NOSKE D U, TAYLOR J R. Picosecond optical fibre sampling oscilloscope[J]. Electronics Letters, 1991, 27(19): 1739-1741.

    [50] TAKARA H, KAWANISHI S, MORIOKA T, et al. 100Gbit/s optical waveform measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses[J]. Electronics Letters, 1994, 30(14): 1152-1153.

    [51] KAWANISHI S, TAKARA H, MORIOKA T, et al. 200Gbit/s, 100km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing[J]. Electronics Letters, 1995, 31(10): 816-817.

    [52] KAWANISHI S, TAKARA H, MORIOKA T, et al. Single channel 400 Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 km employing dispersion slope compensation[J]. Electronics Letters, 1996, 32(10): 916-918.

    [53] MORIOKA T, TAKARA H, KAWANISHI S, et al. Error-free 500Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses[J]. Electronics Letters, 1996, 32(9): 833-834.

    [54] NAKAZAWA M, YOSHIDA E, YAMAMOTO T, et al. TDM single channel 640Gbit/s transmission experiment over 60km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror[J]. Electronics Letters, 1998, 34(9): 907-908.

    [55] YAMAMOTO T, YOSHIDA E, NAKAZAWA M. Ultrafast nonlinear optical loop mirror for demultiplexing 640Gbit/s TDM signals[J]. Electronics Letters, 1998, 34(10): 1013-1014.

    [56] TAKARA H, KAWANISHI S, YOKOO A, et al. 100Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal[J]. Electronics Letters, 1996, 32(24): 2256-2258.

    [57] SHAKE I, OTANI E, TAKARA H, et al. Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique[J]. Electronics Letters, 2000, 36(25): 2087-2088.

    [58] KAWANISHI S, YAMAMOTO T, NAKAZAWA M, et al. High sensitivity waveform measurement of 160 Gbit/s signal with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide[C]. Proc Optical Fiber Commun Conf, 2001: WY6-1-WY6-3.

    [59] OKAMOTO K, ITO F. Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation[J]. J Lightwave Technol, 2009, 27(12): 2169-2175.

    [60] OHTA H, NOGIWA S, ODA N, et al. Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse[J]. Electronics Letters, 1997, 33(25): 2142-2144.

    [61] OHTA H, NOGIWA S, KAWAGUCHI Y, et al. Measurement of 200Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse[J]. Electronics Letters, 2000, 36(8): 737-739.

    [62] NOGIWA S, KAWAGUCHI Y, OHTA H, et al. Highly sensitive and time-resolving optical sampling system using thin PPLN crystal[J]. Electronics Letters, 2000, 36(20): 1727-1728.

    [63] OHTA H, BANJO N, YAMADA N, et al. Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fibre laser[J]. Electronics Letters, 2000, 37(25): 1541-1542.

    [64] NOGIWA S, YAMADA N, OHTA H. Broad wavelength-bandwidth optical sampling system using wavelength-tunable soliton pulses[C]. Proc Optical Fiber Commun Conf, 2002: 533-534.

    [65] YAMADA N, NOGIWA S, OHTA H. 640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses[J]. IEEE Photon Technol Lett, 2004, 16(4): 1125-1127.

    [66] SHIRANE M, HASHIMOTO Y, YAMADA H, et al. A compact optical sampling measurement system using mode-locked laser-diode modules[J]. IEEE Photon Technol Lett, 2000, 12(11): 1537-1539.

    [67] IGAWA K, OTANI A, TSUDA Y. Novel optical sampling oscilloscope without traditional trigger technique and measurement of optical short pulse modulated PRBS pattern[C]. Proc Optical Fiber Commun Conf, 2004: MF73.

    [68] DENG K L, RUNSER R J, GLESK I, et al. Single-shot optical sampling oscilloscope for ultrafast optical waveforms[J]. IEEE Photon Technol Lett, 1998, 10(3): 397-399.

    [69] RUNSER R J, COLDWELL C, TOLIVER P, et al. A practical all-optical sampling technique for high bandwidth, low energy optical communication signals[C]. Proc 13th Annual Meeting of IEEE LEOS, 13-16 Nov. 2000: 770-771.

    [70] DORRER C, KILPER D C, STUART H R, et al. Ultra-sensitive optical sampling by coherent-linear detection[C]. Proc Optical Fiber Commun Conf, 2002: FD5-1—FD5-3.

    [71] KANG I, DREYER K F. Sensitive 320 Gbit/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer[J]. Electronics Letters, 2003, 39(14): 1081-1083.

    [72] DORRER C, DOERR C R, KANG I, et al. High-sensitivity high-resolution linear sampling up to 640 Gb/s using 90o-waveguide optical hybrid[C]. Technical Digest of Conf Lasers and Electro-Optics, 16-21 May 2004: CThQ5.

    [73] DORRER C, DOERR C R, KANG I, et al. Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology[J]. J Lightwave Technol, 2005, 23(1): 178-186.

    [74] JUNGERMAN R L, LEE G, BUCCAFUSCA O, et al. 1-THe bandwidth C- and L-band optical sampling with a bit rate agile timebase[J]. IEEE Photon Technol Lett, 2002, 14(8): 1148-1150.

    [75] DIEZ S, LUDWIG R, SCHMIDT C, et al. 160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photon Technol Lett, 1999, 11(11): 1402-1404.

    [76] SCHMIDT C, SCHUBERT C, BERGER J, et al. Optical Q-factor monitoring at 160 Gb/s using an optical sampling system in an 80 km transmission experiment[C]. Technical Digest of Conf Lasers and Electro-Optics, 19-24 May 2002: 579-580.

    [77] SCHMIDT C, SCHUBERT C, WATANABE S, et al. 320 Gb/s all-optical eye diagram sampling using gain-transparent ultrafast-nonlinear interferometer (GT-UNI)[C]. Proc 28th Eur Conf Optical Commun, 8-12 September 2002: 1-2.

    [78] SCHMIDT-LANGHORST C, SCHUBERT C, BOERNER C, et al. Optical sampling system including clock recovery for 320 Gbit/s DPSK and OOK data signals[C]. Proc Optical Fiber Commun Conf, 2005: OWJ6.

    [79] LI J, HANSRYD J, HEDEKVIST P O, et al. 300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification[J]. IEEE Photon Technol Lett, 2001, 13(9): 987-989.

    [80] WESTLUND M, SUNNERUD H, KARLSSON M, et al. Software-synchronized all-optical sampling[C]. Proc Optical Fiber Commun Conf, 2003: 409-410.

    [81] LI J, WESTLUND M, SUNNERUD H, et al. 0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber[J]. IEEE Photon Technol Lett, 2004, 16(2): 566-568.

    [82] WESTLUND M, SUNNERUD H, ANDREKSON P A. Fiber-based all-optical sampling system with simultaneous -17 dBm sensitivity, 1 ps temporal resolution and 60 nm optical bandwidth[C]. Proc Optical Fiber Commun Conf, 6-11 March 2005: OWJ3.

    [83] SUNNERUD H, WESTLUND M, SKOLD M, et al. All-optical balanced detection system with sub-ps resolution[C]. Proc Optical Fiber Commun Conf, 2009: OThF4.

    [84] SALEM R, FOSTER M A, GERAGHTY D F, et al. High-speed optical signal sampling via temporal magnification[C]. Proc Optical Fiber Commun Conf, 2009: OThH4.

    [85] LUAN F, van ERPS J, PELUSI M D, et al. High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire[J]. Electronics Letters, 2010, 46(3): 231-232.

    [86] LIU Yuan-shan. Research on key techniques and implementation of high-speed optical short-pulse sources and ultrawide-bandwidth optical oscilloscope[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2008.

    [87] LIU Yuan-shan, ZHANG Jian-guo, CHEN Guo-fu, et al. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability[J]. Journal of Optics, 2010, 12(9): 5204.

    CLP Journals

    [1] Li Chao, Zhao Lei, Huang Zhihua, Lin Honghuan, Tian Xiaocheng, Deng Ying, Huang Xiaojun, Zhu Qihua. Theory Study on Self-Similar Pulse in Mode-Locked Fiber Laser[J]. Chinese Journal of Lasers, 2013, 40(6): 602017

    [2] Li Chao, Zhao Lei, Huang Zhihua, Lin Honghuan, Deng Ying, Huang Xiaojun, Zhu Qihua. Simulation Study on Amplitude Stability in Nonlinear Polarization Rotation Mode-Locked Fiber Laser[J]. Chinese Journal of Lasers, 2013, 40(2): 202007

    ZHANG Jian-guo, LIU Yuan-shan. Development of Ultra-wide Bandwidth All-optical Sampling Oscilloscope Equipment[J]. Acta Photonica Sinica, 2011, 40(4): 487
    Download Citation