• Advanced Photonics Nexus
  • Vol. 4, Issue 1, 016005 (2025)
Zhen Wang1, Shuxin Liu1, Jingchi Li1, Yong Zhang1..., Xinyuan Fang2, Qiwen Zhan3 and Yikai Su1,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai Jiao Tong University, Department of Electronic Engineering and Electrical Engineering, Shanghai, China
  • 2University of Shanghai for Science and Technology, School of Artificial Intelligence Science and Technology, Shanghai, China
  • 3University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.4.1.016005 Cite this Article Set citation alerts
    Zhen Wang, Shuxin Liu, Jingchi Li, Yong Zhang, Xinyuan Fang, Qiwen Zhan, Yikai Su, "Ultrawide field-of-view integrated optical phased arrays employing multiple orbital angular momentum beams," Adv. Photon. Nexus 4, 016005 (2025) Copy Citation Text show less
    References

    [1] R. Collis. LiDAR. Appl. Opt., 9, 1782-1788(1970).

    [2] U. Wandinger, C. Weitkamp, M. McCormick, C. Weitkamp. LiDAR: Range-Resolved Optical Remote Sensing of the Atmosphere, 1-18(2005).

    [3] O. Wolf et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun., 6, 7667(2015).

    [4] P. Hyde et al. Exploring LiDAR–radar synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens. Environ., 106, 28-38(2007).

    [5] T. Raj et al. A survey on lidar scanning mechanisms. Electronics, 9, 741(2020).

    [6] P. Dong, Q. Chen. LiDAR Remote Sensing and Applications(2017).

    [7] J. K. Doylend et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express, 19, 21595-21604(2011).

    [8] J. Sun et al. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [9] T. Fukui et al. Non-redundant optical phased array. Optica, 8, 1350-1358(2021).

    [10] S. A. Miller et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 7, 3-6(2020).

    [11] P. Lu et al. Integrated multi-beam optical phased array based on a 4 × 4 Butler matrix. Opt. Lett., 46, 1566-1569(2021).

    [12] D. Kwong et al. On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett., 39, 941-944(2014).

    [13] K. Van Acoleyen et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett., 34, 1477-1479(2009).

    [14] D. J. Lum. Ultrafast time-of-flight 3D LiDAR. Nat. Photonics, 14, 2-4(2020).

    [15] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [16] T. Inomata et al. Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne LiDAR. Nat. Hum. Behav., 5, 1487-1501(2021).

    [17] M. Brydegaard et al. LiDAR reveals activity anomaly of malaria vectors during pan-African eclipse. Sci. Adv., 6, eaay5487(2020).

    [18] J. Tachella et al. Real-time 3D reconstruction from single-photon LiDAR data using plug-and-play point cloud denoisers. Nat. Commun., 10, 4984(2019).

    [19] J. Park et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [20] R. Tobin et al. Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single-photon LiDAR. Sci. Rep., 11, 11236(2021).

    [21] C.-P. Hsu et al. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 1-16(2020).

    [22] C. V. Poulton et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 1-8(2019).

    [23] W. S. Rabinovich et al. Free space optical communication link using a silicon photonic optical phased array. Proc. SPIE, 9354, 93540B(2015).

    [24] S. Royo, M. Ballesta-Garcia. An overview of LiDAR imaging systems for autonomous vehicles. Appl. Sci., 9, 4093(2019).

    [25] J. Choi et al. Multi-target tracking using a 3D-LiDAR sensor for autonomous vehicles, 881-886(2013).

    [26] Y. Guo et al. Integrated optical phased arrays for beam forming and steering. Appl. Sci., 11, 4017(2021).

    [27] Y. Liu et al. A single-chip multi-beam steering optical phased array: design rules and simulations. Opt. Express, 29, 7049-7059(2021).

    [28] Y. Liu et al. On-chip multi-beam emitting optical phased array for wide-angle LiDAR, JTu2G.25(2020).

    [29] C. Liu et al. High-resolution 3D imaging with a low-pixel APD array through multi-beam scanning of fiber-type OPA, 750-754(2021).

    [30] Y. Wu et al. Multi-beam optical phase array for long-range LiDAR and free-space data communication. Opt. Laser Technol., 151, 108027(2022).

    [31] G. He et al. A review of multibeam phased array antennas as LEO satellite constellation ground station. IEEE Access, 9, 147142-147154(2021).

    [32] A. Jacomb-Hood, E. Lier. Multibeam active phased arrays for communications satellites. IEEE Microwave Mag., 1, 40-47(2000).

    [33] G. Toso, P. Angeletti, C. Mangenot. Multibeam antennas based on phased arrays: an overview on recent ESA developments, 178-181(2014).

    [34] S. Prasad et al. mmWave multibeam phased array antenna for 5G applications. J. Electromagn. Wave, 35, 1802-1814(2021).

    [35] Z. Zhou et al. Butler matrix enabled multi-beam optical phased array for two-dimensional beam-steering, 1-3(2022).

    [36] Y. Wu, S. Shao, D. Che. Fast and low grating lobe multi-beam steering with a subarray level unequally spaced optical phased array. JOSA B, 38, 3417-3424(2021).

    [37] K. Yoneda et al. Vehicle localization using 76 GHz omnidirectional millimeter-wave radar for winter automated driving, 971-977(2018).

    [38] J. De Wit, W. Van Rossum, A. De Jong. Orthogonal waveforms for FMCW MIMO radar(2011).

    [39] G. Chang et al. Orthogonal waveform with multiple diversities for MIMO radar. IEEE Sens. J., 18, 4462-4476(2018).

    [40] D. Wu et al. Multi-beam single-photon LiDAR with hybrid multiplexing in wavelength and time. Opt. Laser Technol., 145, 107477(2022).

    [41] C. Weimer et al. LiDARs utilizing vortex laser beams. Proc. SPIE, 10631, 106310Q(2018).

    [42] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [43] J. Wang et al. Optical Fiber Telecommunications VIB: Chapter 12. Multimode Communications Using Orbital Angular Momentum(2013).

    [44] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [45] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 8, 90(2019).

    [46] S. Zhang et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photonics Rev., 14, 2000062(2020).

    [47] D. R. Gozzard et al. Optical vortex beams with controllable orbital angular momentum using an optical phased array. OSA Contin., 3, 3399-3406(2020).

    [48] Y. Weng, Z. Pan. Orbital angular momentum based sensing and their applications: a review. J. Lightwave Technol., 41, 2007-2016(2022).

    [49] B. Cochenour et al. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM). Proc. SPIE, 10186, 1018603(2017).

    [50] N. Dostart et al. Serpentine optical phased arrays for scalable integrated photonic LiDAR beam steering. Optica, 7, 726-733(2020).

    [51] K. Sayyah et al. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers. Opt. Express, 23, 19405-19416(2015).

    [52] S. Chung, H. Abediasl, H. Hashemi. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits, 53, 275-296(2017).

    [53] K. Van Acoleyen, H. Rogier, R. Baets. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express, 18, 13655-13660(2010).

    [54] O. A. Saraereh. Design and performance evaluation of OAM-antennas: a comparative review. IEEE Access, 11, 27992-28013(2023).

    [55] R. Chen et al. Orbital angular momentum waves: generation, detection, and emerging applications. IEEE Commun. Surv. Tutor., 22, 840-868(2019).

    [56] K. Liu et al. Microwave-sensing technology using orbital angular momentum: overview of its advantages. IEEE Veh. Technol. Mag., 14, 112-118(2019).

    [57] K. Liu et al. Orbital-angular-momentum-based electromagnetic vortex imaging. IEEE Antennas Wireless Propag. Lett., 14, 711-714(2014).

    [58] K. Liu et al. Generation of OAM beams using phased array in the microwave band. IEEE Trans. Antennas Propag., 64, 3850-3857(2016).

    [59] J. Long et al. High-power mode-programmable orbital angular momentum beam emitter with an internally sensed optical phased array. Chin. Opt. Lett., 22, 021402(2024).

    [60] K. Yang et al. Modulating and identifying an arbitrary curvilinear phased optical vortex array of high-order orbital angular momentum. Opt. Laser Technol., 168, 109984(2024).

    [61] Y. Chen et al. Integrated phased array for scalable vortex beam multiplexing. J. Lightwave Technol., 41, 2070-2078(2022).

    [62] R. M. Fouda et al. Experimental BER performance of quasi-circular array antenna for OAM communications. IEEE Antennas Wireless Propag. Lett., 19, 1350-1354(2020).

    [63] P.-Y. Feng, S.-W. Qu, S. Yang. OAM-generating transmitarray antenna with circular phased array antenna feed. IEEE Trans. Antennas Propag., 68, 4540-4548(2020).

    [64] N. Zhou et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6×3.6  μm2 footprint. Sci. Adv., 5, eaau9593(2019). https://doi.org/10.1126/sciadv.aau9593

    [65] P. Hall, S. Vetterlein. Review of radio frequency beamforming techniques for scanned and multiple beam antennas, 293-303(1990).

    [66] Y. Aslan et al. Orthogonal versus zero-forced beamforming in multibeam antenna systems: review and challenges for future wireless networks. IEEE Journal of Microwaves, 1, 879-901(2021).

    [67] H. Wolf et al. Satellite multibeam antennas at airbus defence and space: state of the art and trends, 182-185(2014).

    [68] D. Striccoli, G. Piro, G. Boggia. Multicast and broadcast services over mobile networks: a survey on standardized approaches and scientific outcomes. IEEE Commun. Surv. Tutor., 21, 1020-1063(2018).

    [69] N. Chukhno et al. Models, methods, and solutions for multicasting in 5G/6G mmwave and sub-THz systems. IEEE Commun. Surv. Tutor., 26, 119-159(2023).

    [70] I. B. Djordjevic. Multidimensional OAM-based secure high-speed wireless communications. IEEE Access, 5, 16416-16428(2017).

    [71] M. Zhang et al. Physical layer key generation for secure OAM communication systems. IEEE Trans. Veh. Technol., 71, 12397-12401(2022).

    [72] M. A. B. Abbasi et al. Physical layer secure communication using orbital angular momentum transmitter and a single-antenna receiver. IEEE Trans. Antennas Propag., 68, 5583-5591(2020).

    [73] J. Wang et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [74] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [75] S. Li et al. Atmospheric turbulence compensation in orbital angular momentum communications: advances and perspectives. Opt. Commun., 408, 68-81(2018).

    [76] L. Marrucci. Spinning the Doppler effect. Science, 341, 464-465(2013).

    [77] M. P. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    Zhen Wang, Shuxin Liu, Jingchi Li, Yong Zhang, Xinyuan Fang, Qiwen Zhan, Yikai Su, "Ultrawide field-of-view integrated optical phased arrays employing multiple orbital angular momentum beams," Adv. Photon. Nexus 4, 016005 (2025)
    Download Citation