• Chinese Journal of Lasers
  • Vol. 48, Issue 21, 2105001 (2021)
Xichun Zhang1, Jinguang Lü2, Chong Zhang3, Wensheng Fu1, Xin Zhao1, Weiyan Li1, and He Zhang1、*
Author Affiliations
  • 1State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 3The First Military Representative Office of the Army in Changchun, Changchun, Jilin 130033, China
  • show less
    DOI: 10.3788/CJL202148.2105001 Cite this Article Set citation alerts
    Xichun Zhang, Jinguang Lü, Chong Zhang, Wensheng Fu, Xin Zhao, Weiyan Li, He Zhang. Multiple Bottle Beams Based on Metasurface Light Field Control[J]. Chinese Journal of Lasers, 2021, 48(21): 2105001 Copy Citation Text show less
    References

    [1] Arlt J, Padgett M J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam[J]. Optics Letters, 25, 191-193(2000).

    [2] Qiu P Z, Yu B B, Jing M et al. Excitation of in-plane surface plasmon polariton bottle beams by multiple-incident-light illumination[J]. Applied Physics Express, 11, 072003(2018).

    [3] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 330, 769-771(1987).

    [4] Snakard E P, Miller M, Berridge B et al. Cooled-tip diode laser catheter for improved catheter ablation of ventricular tachycardia[J]. Journal of Investigative Surgery, 14, 357-366(2001).

    [5] Andersson-Engels S, Andersen P E. Selected topics in biophotonics: photodynamic therapy and optical micromanipulation for biophotonics[J]. Journal of Biomedical Optics, 15, 041501(2010).

    [6] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [7] Wu F T, Lu W H, Ma B T. The beam propagation and transformation in axicon-lens system[J]. Acta Optica Sinica, 29, 2557-2560(2009).

    [8] Isenhower L, Williams W, Dally A et al. Atom trapping in an interferometrically generated bottle beam trap[J]. Optics Letters, 34, 1159-1161(2009).

    [9] McGloin D, Spalding G, Melville H et al. Applications of spatial light modulators in atom optics[J]. Optics Express, 11, 158-166(2003).

    [10] Ozeri R, Khaykovich L, Davidson N. Long spin relaxation times in a single-beam blue-detuned optical trap[J]. Physical Review A, 59, R1750(1999).

    [11] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [12] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 11, 917-924(2012).

    [13] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 8, 889-898(2014).

    [14] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [15] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [16] Kruk S, Hopkins B, Kravchenko I I et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 1, 030801(2016).

    [17] Fattal D, Li J J, Peng Z et al. Flat dielectric grating reflectors with focusing abilities[J]. Nature Photonics, 4, 466-470(2010).

    [18] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).

    [19] Lin D, Fan P, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [20] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [21] Yin L L, Vlasko-Vlasov V K, Pearson J et al. Subwavelength focusing and guiding of surface plasmons[J]. Nano Letters, 5, 1399-1402(2005).

    [22] Liu Z W, Steele J M, Srituravanich W et al. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters, 5, 1726-1729(2005).

    [23] Huang F M, Zheludev N, Chen Y F et al. Focusing of light by a nanohole array[J]. Applied Physics Letters, 90, 091119(2007).

    [24] Xiang M, Kuang D F, Gu P C et al. Multi-wavelength multifocal metasurface with polarization multiplexing[J]. Chinese Journal of Lasers, 47, 1113001(2020).

    [25] Liang Y, Xu Y Y, Zou Y et al. Design of achromatic polarization-insensitive metalens[J]. Chinese Journal of Lasers, 48, 0303001(2021).

    [26] Luo Y, Wang W T, Zhao P J et al. Dual-mode metasurface of polarization-specific focusing and keeping wavefront[J]. Chinese Journal of Lasers, 47, 0301007(2020).

    [27] Lu F L, Sedgwick F G, Karagodsky V et al. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings[J]. Optics Express, 18, 12606-12614(2010).

    [28] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [29] Wang S, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [30] Cheng Z M, Wu F T, Fang X et al. Multi-bottle beam generated by vaulted axicon[J]. Acta Physica Sinica, 61, 214201(2012).

    Xichun Zhang, Jinguang Lü, Chong Zhang, Wensheng Fu, Xin Zhao, Weiyan Li, He Zhang. Multiple Bottle Beams Based on Metasurface Light Field Control[J]. Chinese Journal of Lasers, 2021, 48(21): 2105001
    Download Citation