• Photonics Research
  • Vol. 8, Issue 10, 1613 (2020)
Luocheng Huang1,†, James Whitehead1,†, Shane Colburn1, and Arka Majumdar1,2,*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
  • 2Department of Physics, University of Washington, Seattle, Washington 98195, USA
  • show less
    DOI: 10.1364/PRJ.396839 Cite this Article Set citation alerts
    Luocheng Huang, James Whitehead, Shane Colburn, Arka Majumdar, "Design and analysis of extended depth of focus metalenses for achromatic computational imaging," Photonics Res. 8, 1613 (2020) Copy Citation Text show less
    References

    [1] Z. Song. Handbook of 3D Machine Vision: Optical Metrology and Imaging(2013).

    [2] F. Mutz, L. P. Veronese, T. Oliveira-Santos, E. de Aguiar, F. A. Auat Cheein, A. Ferreira De Souza. Large-scale mapping in complex field scenarios using an autonomous car. Exp. Syst. Appl., 46, 439-462(2016).

    [3] X. Chen, L. Xu, Y. Wang, H. Wang, F. Wang, X. Zeng, Q. Wang, J. Egger. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J. Biomed. Inform., 55, 124-131(2015).

    [4] Y. Peng, Q. Fu, F. Heide, W. Heidrich. The diffractive achromat full spectrum computational imaging with diffractive optics. ACM Trans. Graph., 35, 31(2016).

    [5] A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, A. Majumdar. Low-contrast dielectric metasurface optics. ACS Photonics, 3, 209-214(2016).

    [6] A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, A. Faraon. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express, 23, 33310-33317(2015).

    [7] M. W. Farn. Binary gratings with increased efficiency. Appl. Opt., 31, 4453-4458(1992).

    [8] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, C. J. Chang-Hasnain. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express, 18, 12606-12614(2010).

    [9] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [10] D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics, 4, 466-470(2010).

    [11] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [12] R. C. Devlin, M. Khorasaninejad, F. Capasso, A. Y. Zhu, W. T. Chen, J. Oh. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [13] S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, R. Menon. Extreme-depth-of-focus imaging with a flat lens. Optica, 7, 214-217(2020).

    [14] E. Bayati, R. Pestourie, S. Colburn, Z. Lin, S. G. Johnson, A. Majumdar. Inverse designed metalenses with extended depth of focus. ACS Photonics, 7, 873-878(2020).

    [15] X. Luo, Y. Hu, X. Li, Y. Jiang, Y. Wang, P. Dai, Q. Liu, Z. Shu, H. Duan. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv. Opt. Mater., 8, 1902020(2020).

    [16] S. Liang, J. Xie, P. Tang, J. Liu. Large object distance and super-resolution graded-index photonic crystal flat lens. Opt. Express, 27, 9601-9609(2019).

    [17] C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, Y. Lu, T. Xu, H. J. Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9(2020).

    [18] J. Xie, J. Wang, R. Ge, B. Yan, E. Liu, W. Tan, J. Liu. Multiband super-resolution imaging of graded-index photonic crystal flat lens. J. Phys. D, 51, 205103(2018).

    [19] J. Xie, S. Liang, J. Liu, P. Tang, S. Wen. Near-zero-sidelobe optical subwavelength asymmetric focusing lens with dual-layer metasurfaces. Ann. Phys., 532, 2000035(2020).

    [20] D. U. Yildirim, A. Ghobadi, M. C. Soydan, A. E. Serebryannikov, E. Ozbay. One-way and near-absolute polarization insensitive near-perfect absorption by using an all-dielectric metasurface. Opt. Lett., 45, 2010-2013(2020).

    [21] V. N. Le, S. Chen, Z. Fan. Optimized asymmetrical tangent phase mask to obtain defocus invariant modulation transfer function in incoherent imaging systems. Opt. Lett., 39, 2171-2174(2014).

    [22] S.-L. Lee, T.-C. Lu, Y.-J. Hung, L.-R. Chen, Z.-T. Huang. Photonic integrated multiwavelength laser arrays: recent progress and perspectives. Appl. Phys. Lett., 116, 180501(2020).

    [23] D. Tang, L. Chen, J. Liu. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing. Opt. Express, 27, 12308-12316(2019).

    [24] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [25] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [26] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [27] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [28] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [29] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [30] W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [31] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825-831(2018).

    [32] A. She, S. Zhang, S. Shian, D. R. Clarke, F. Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express, 26, 1573-1585(2018).

    [33] O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [34] J. N. Mait, G. W. Euliss, R. A. Athale. Computational imaging. Adv. Opt. Photonics, 10, 409-483(2018).

    [35] S. Colburn, A. Zhan, A. Majumdar. Metasurface optics for full-color computational imaging. Sci. Adv., 4, eaar2114(2018).

    [36] S. Colburn, A. Majumdar. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible. ACS Photonics, 7, 120-127(2019).

    [37] L. Ledesma-Carrillo, C. M. Gómez-Sarabia, M. Torres-Cisneros, R. Guzmán-Cabrera, C. Guzmán-Cano, J. Ojeda-Castañeda. Hadamard circular masks: high focal depth with high throughput. Opt. Express, 25, 17004-17020(2017).

    [38] J. Ojeda-Castaneda, J. E. A. Landgrave, H. M. Escamilla. Annular phase-only mask for high focal depth. Opt. Lett., 30, 1647-1649(2005).

    [39] A. Kolb, B. Labitzke, M. Rouf, W. Heidrich, F. Heide, M. B. Hullin. High-quality computational imaging through simple lenses. ACM Trans. Graph., 32, 149(2013).

    [40] C. J. Schuler, M. Hirsch, S. Harmeling, B. Scholkopf. Non-stationary correction of optical aberrations. International Conference on Computer Vision, 659-666(2011).

    [41] H. Haim, A. Bronstein, E. Marom. Computational multi-focus imaging combining sparse model with color dependent phase mask. Opt. Express, 23, 24547-24556(2015).

    [42] S. Elmalem, R. Giryes, E. Marom. Learned phase coded aperture for the benefit of depth of field extension. Opt. Express, 26, 15316-15331(2018).

    [43] Y. Peng, Q. Fu, H. Amata, S. Su, F. Heide, W. Heidrich. Computational imaging using lightweight diffractive-refractive optics. Opt. Express, 23, 31393-31407(2015).

    [44] O. Cossairt, S. Nayar. Spectral focal sweep: extended depth of field from chromatic aberrations. IEEE International Conference on Computational Photography (ICCP), 1-8(2010).

    [45] E. R. Dowski, W. T. Cathey. Extended depth of field through wave-front coding. Appl. Opt., 34, 1859-1866(1995).

    [46] W. Chi, N. George. Electronic imaging using a logarithmic asphere. Opt. Lett., 26, 875-877(2001).

    [47] Z. Zhai, S. Ding, Q. Lv, X. Wang, Y. Zhong. Extended depth of field through an axicon. J. Mod. Opt., 56, 1304-1308(2009).

    [48] H. B. Wach, E. R. Dowski, W. T. Cathey. Control of chromatic focal shift through wave-front coding. Appl. Opt., 37, 5359-5367(1998).

    [49] N. Patwary, H. Shabani, A. Doblas, G. Saavedra, C. Preza. Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding. Appl. Opt., 56, D14-D23(2017).

    [50] S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, F. Capasso. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett., 113, 111104(2018).

    [51] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 604-620(2020).

    [52] Y. Wang, S. Yan, A. T. Friberg, D. Kuebel, T. D. Visser. Electromagnetic diffraction theory of refractive axicon lenses. J. Opt. Soc. Am. A, 34, 1201-1211(2017).

    [53] A. Zhan, S. Colburn, C. M. Dodson, A. Majumdar. Metasurface freeform nanophotonics. Sci. Rep., 7(2017).

    [54] G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, I. M. Vellekoop. Generalized optical memory effect. Optica, 4, 886-892(2017).

    [55] F. Orieux, J.-F. Giovannelli, T. Rodet. Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution. J. Opt. Soc. Am. A, 27, 1593-1607(2010).

    [56] N. Nacereddine, S. Tabbone, D. Ziou. Similarity transformation parameters recovery based on Radon transform. Application in image registration and object recognition. Pattern Recogn., 48, 2227-2240(2015).

    [57] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [58] D. G. Smith. Field Guide to Physical Optics(2013).

    [59] P. Getreuer. Total variation deconvolution using split Bregman. Image Process. Line, 2, 158-174(2012).

    [60] F. Heide, M. Steinberger, Y. T. Tsai, M. Rouf, D. Pająk, D. Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian, J. Kautz. FlexISP: a flexible camera image processing framework. ACM Trans. Graph., 33, 231(2014).

    [61] V. Liu, S. Fan. S4 : a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun., 183, 2233-2244(2012).

    [62] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu. scikit-image: image processing in Python. PeerJ, 2, e453(2014).

    CLP Journals

    [1] James E. M. Whitehead, Alan Zhan, Shane Colburn, Luocheng Huang, Arka Majumdar, "Fast extended depth of focus meta-optics for varifocal functionality," Photonics Res. 10, 828 (2022)

    [2] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang, "Freeform OST-HMD system with large exit pupil diameter and vision correction capability," Photonics Res. 10, 21 (2022)

    [3] Feng Zhao, Zicheng Shen, Decheng Wang, Bijie Xu, Xiangning Chen, Yuanmu Yang, "Synthetic aperture metalens," Photonics Res. 9, 2388 (2021)

    Luocheng Huang, James Whitehead, Shane Colburn, Arka Majumdar, "Design and analysis of extended depth of focus metalenses for achromatic computational imaging," Photonics Res. 8, 1613 (2020)
    Download Citation