• Acta Photonica Sinica
  • Vol. 49, Issue 11, 77 (2020)
Zhi-gang ZHAO1、2, Chen GUAN1、2, Zhen-hua CONG1、2, Xing-yu ZHANG1、2, Zhen ZHU3, Shi-wu WANG4, Yi NIE4, Yang LIU1、2, and Zhao-jun LIU1、2、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technology and Application, Qingdao, Shandong6637, China
  • 3Huaguang Optoelectronics Co., Ltd., Jinan250101, China
  • 4Crystech Co., Ltd., Qingdao, Shandong266000, China
  • show less
    DOI: 10.3788/gzxb20204911.1149006 Cite this Article
    Zhi-gang ZHAO, Chen GUAN, Zhen-hua CONG, Xing-yu ZHANG, Zhen ZHU, Shi-wu WANG, Yi NIE, Yang LIU, Zhao-jun LIU. Research Progresses of Alexandrite Solid-state Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 77 Copy Citation Text show less
    References

    [1] J C WALLING, H P JENSSEN, R C MORRIS. Tunable-laser performance in BeAl2O4:Cr3+. Optics Letters, 4, 182-183(1979).

    [2] J C WALLING, O G PETERSON, H P JENSSEN. Tunable alexandrite lasers. IEEE Journal of Quantum Electronics, 16, 1302-1315(1980).

    [3] J W KUPER, T CHIN, H E ASCHOFF. CL3(1990).

    [4] J P TRAFELI, J M KWAN, K J MEEHAN. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatologic Surgery, 33, 1477-1482(2007).

    [5] D BRUNEAU, H CAZENEUVE, C LOTH. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement. Applied Optics, 30, 3930-3937(1991).

    [6] P ARORA, R SARKAR, V K GARG. Lasers for treatment of melasma and post-inflammatory hyperpigmentation. Journal of Cutaneous and Aesthetic Surgery, 5, 93-103(2012).

    [7] P BAKULE, P E G BAIRD, M G BOSHIER. A chirp-compensated, injection-seeded alexandrite laser. Applied Physics B, 71, 11-17(2000).

    [8] E BEYATLI, I BAALI, B SUMPF. Tapered diode-pumped continuous-wave alexandrite laser. Journal of the Optical Society of America B, 30, 3184-3192(2013).

    [9] A TEPPITAKSAK, A MINASSIAN, G M THOMAS. High efficiency >26 W diode end-pumped Alexandrite laser. Optics Express, 22, 16386-16392(2014).

    [10] J SATHIAN, G TAWY, X SHENG. Non-astigmatic alexandrite ring laser design with wavelength-tunable single-longitudinal-mode operation. Journal of the Optical Society of America B, 37, 2185-2192(2020).

    [11] X Y PENG, A MARRAKCHI, J C WALLING. CMAA5(2005).

    [12] M J DAMZEN, G M THOMAS, A MINASSIAN. Diode-side-pumped alexandrite slab lasers. Optics Express, 25, 11622-11636(2017).

    [13] G TAWY, A MINASSIAN, M J DAMZEN. High-power 7.4 W TEM00 and wavelength-tunable alexandrite laser with a novel cavity design and efficient fibre-coupled diode-pumping. OSA Continuum, 3, 1638-1649(2020).

    [14] M WALOCHNIK, B JUNGBLUTH, H HUBER. Diode-pumped cw alexandrite laser with temporally stable 6.5 W in TEM00 operation with prospect of power scaling. Optics Express, 28, 15761-15769(2020).

    [15] Chong-li XIAO. Study on all-solid-state BeAl2O4:Cr3+ laser(2011).

    [16] Chen GUAN, Zhao-jun LIU, Zhen-hua CONG. Alexandrite laser on-peak pumped by a frequency doubled Raman Yb-fiber laser at 589 nm. OSA Continuum, 3, 1204-1211(2020).

    [17] U DEMIRBAS. Cr:colquiriite lasers: current status and challenges for further progress. Progress in Quantum Electronics, 68, 100227(2019).

    [18] J C WALLING, D F HELLER, H SAMELSON. Tunable alexandrite lasers: development and performance. IEEE Journal of Quantum Electronics, 21, 1568-1581(1985).

    [19] Z W MIAO, H J YU, J Y ZHANG. Watt-level CW Ti: sapphire oscillator directly pumped with green laser diodes module. IEEE Photonics Technology Letters, 32, 247-250(2020).

    [20] R C POWELL, L XI, X GANG. Spectroscopic properties of alexandrite crystals. Physical Review B, 32, 2788-2797(1985).

    [21] png. https:∥commons.wikimedia.org/wiki/File:Alexandrite_structure.png

    [22] U DEMIRBAS, A SENNAROGLU, F X KÄRTNER. Temperature dependence of alexandrite effective emission cross section and small signal gain over the 25-450°C range. Optical Materials Express, 9, 3352-3370(2019).

    [23] W R KERRIDGE. Development of diode pumped alexandrite lasers(2020).

    [24] Zhen ZHU, Cheng-feng XIAO, Wei XIA. Design and fabrication of high power 640 nm red laser diodes. Laser & Optoelectronics Progress, 55, 081403(2018).

    [25] N SHIMADA, K SHIBATA, Y HANAMAKI. 12W CW operation of 640nm-band laser diode array, 6876, 20(2008).

    [26] K KURAMOTO, T NISHIDA. High-power operation of AlGaInP red laser diode for display applications, 9348, 93480H(2015).

    [27] K KURAMOTO, M MIYASHITA. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric, 10514, 1051404(2018).

    [28] M HAGIMOTO, S MIYAMOTO, Y KIMURA. 5W red laser diode for projector light source, 10939, 109391I(2019).

    [29] L BAO, M GRIMSHAW, M DEVITO. High power diode lasers emitting from 639 nm to 690 nm, 8965, 896512(2014).

    [30] G BLUME, C KASPARI, D FEISE. Tapered diode lasers and laser modules near 635nm with efficient fiber coupling for flying-spot display applications. Optical Review, 19, 395-399(2012).

    [31] D IMANISHI. High-temperature operation of 640 nm wavelength high-power laser diode arrays. Japanese Journal of Applied Physics, 56, 032702(2017).

    [32] W XIA, Z ZHU, X Y LI. Improved thermal performance of 640 nm laser diode packaged by SiC submount. Journal of Russian Laser Research, 40, 193-196(2019).

    [33] Yun XU, Qing CAO, Xiao-peng ZHU. High power AlGaInP laser diodes with zinc-diffused window mirror structure. Chinese Optics Letters, 2, 647-649(2004).

    [34] De-ying MA, Pei-xu LI, Wei XIA. Mg doped p-cladding AlInP layer with window-structure high power 660 nm (3.7 W) AlGaInP broad area laser diodes. Journal of Synthetic Crystals, 38, 597-601(2009).

    [35] G V BUKIN, S Y VOLKOV, V N MATROSOV. Stimulated emission from alexandrite (BeAl2O4:Cr3+. Soviet Journal of Quantum Electronics, 8, 671-672(1978).

    [36] J C WALLING, O G PETERSON, R C MORRIS. Tunable CW Alexandrite Laser. IEEE Journal of Quantum Electronics, 16, 120-121(1980).

    [37] S GUCH, C E JONES. Alexandrite-laser performance at high temperature. Optics Letters, 7, 608-610(1982).

    [38] J C WALLING, O G PETERSON. High gain laser performance in alexandrite. IEEE Journal of Quantum Electronics, 16, 119-120(1980).

    [39] S T LAI, M L SHAND. High efficiency cw laser‐pumped tunable alexandrite laser. Journal of Applied Physics, 54, 5642-5644(1983).

    [40] R SCHEPS, J F MYERS, T R GLESNE. Monochromatic end-pumped operation of an Alexandrite laser. Optics Communications, 97, 363-366(1993).

    [41] S GHANBARI, A MAJOR. High power continuous-wave Alexandrite laser with green pump. Laser Physics, 26, 075001(2016).

    [42] J W KUPER, D C BROWN. High efficiency CW green pumped Alexandrite lasers, 6100, 61000T(2006).

    [43] R SCHEPS, B M GATELY, J F MYERS. Alexandrite laser pumped by semiconductor-lasers. Applied Physics Letters, 56, 2288-2290(1990).

    [44] G M THOMAS, A MINASSIAN, M J DAMZEN. Optical vortex generation from a diode-pumped alexandrite laser. Laser Physics Letters, 15, 045804(2018).

    [45] E A ARBABZADAH, M J DAMZEN. Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping. Laser Physics Letters, 13, 065002(2016).

    [46] W R KERRIDGE-JOHNS, M J DAMZEN. Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison. Journal of the Optical Society of America B, 33, 2525-2534(2016).

    [47] W R KERRIDGE-JOHNS, M J DAMZEN. Temperature effects on tunable cw Alexandrite lasers under diode end-pumping. Optics Express, 26, 7771-7785(2018).

    [48] G TAWY, J WANG, M J DAMZEN. Pump-induced lensing effects in diode pumped Alexandrite lasers. Optics Express, 27, 35865-35883(2019).

    [49] M FIBRICH, J ŠULC, D VYHLÍDAL. Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range. Laser Physics, 27, 115801(2017).

    [50] M FIBRICH, J ŠULC, H JELÍNKOVÁ. Alexandrite microchip lasers. Optics Express, 27, 16975-16982(2019).

    [51] R SAWADA, H TANAKA, N SUGIYAMA. Wavelength-multiplexed pumping with 478-and 520-nm indium gallium nitride laser diodes for Ti: sapphire laser. Applied Optics, 56, 1654-1661(2017).

    [52] A MUNK, B JUNGBLUTH, M STROTKAMP. Diode-pumped alexandrite ring laser for LIDAR applications, 9726, 97260l(2016).

    [53] G M THOMAS, A MINASSIAN, X SHENG. Diode-pumped alexandrite lasers in Q-switched and cavity-dumped Q-switched operation. Optics Express, 24, 27212-27224(2016).

    [54] U PARALI, X SHENG, A MINASSIAN. Diode-pumped alexandrite laser with passive SESAM Q-switching and wavelength tunability. Optics Communications, 410, 970-976(2018).

    [55] A MUNK, B JUNGBLUTH, M STROTKAMP. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements. Optics Express, 26, 14928-14935(2018).

    [56] A MUNK, M STROTKAMP, M WALOCHNIK. Diode-pumped Q-switched alexandrite laser in single longitudinal mode operation with Watt-level output power. Optics Letters, 43, 5492-5495(2018).

    [57] G TWAY, M J DAMZEN. Tunable, dual wavelength and self-Q-switched alexandrite laser using crystal birefringence control. Optics Express, 27, 17507-17520(2019).

    [58] R J KEYES, T M QUIST. Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers. Applied Physics Letters, 4, 50-52(1964).

    [59] P PICHON, A BARBET. LED-pumped alexandrite laser oscillator and amplifier. Optics Letters, 42, 4191-4194(2017).

    [60] V N LISITSYN, V N MATROSOV, V P OREKHOVA. Generation of 0.7-0.8 µ picosecond pulses in an alexandrite laser with passive mode locking. Soviet Journal of Quantum Electronics, 12, 368-370(1982).

    [61] F VOLKER, Q LU, H WEBER. Passive mode-locking of an alexandrite laser for picosecond pulse generation. Journal of Applied Physics, 69, 3432-3439(1991).

    [62] S GHANBARI, R AKBARI, A MAJOR. Femtosecond Kerr-lens mode-locked alexandrite laser. Optics Express, 24, 14836-14840(2016).

    [63] S GHANBARI, K A FEDOROVA, A B KRYSA. Femtosecond alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber. Optics Letters, 43, 232-234(2018).

    [64] C CIHAN, A MUTI, I BAYLAM. 70 femtosecond Kerr-lens mode-locked multipass-cavity alexandrite laser. Optics Letters, 43, 1315-1318(2018).

    [65] C CIHAN, C KOCABAS, U DEMIRBAS. Graphene mode-locked femtosecond alexandrite laser. Optics Letters, 43, 3969-3972(2018).

    [66] D J HARTER, P BADO. Wavelength tunable alexandrite regenerative amplifier. Applied Optics, 27, 4392-4395(1988).

    [67] M PESSOT, J SQUIER, P BADO. Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier. IEEE Journal of Quantum Electronics, 25, 61-66(1989).

    [68] A HARIHARAN, M E FERMANN, M L STOCK. Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification. Optics Letters, 21, 128-130(1996).

    [69] N P BARNES, T M JOHNSON, D J GETTEMY. Tunable near ultraviolet laser system from a frequency doubled alexandrite laser. IEEE Journal of Quantum Electronics, 19, 1437-1442(1983).

    [70] D W CHEN. Alexandrite laser frequency doubling in β‐BaB204 crystals. Optics Letters, 13, 808-810(1988).

    [71] J W KUPER, T C CHIN, P A PAPANESTOR. High-average-power, narrow band 248 nm alexandrite laser system, 2115, 88-93(1994).

    [72] S IMAI, T YAMADA, Y FUJIMORI. Third‐harmonic generation of an alexandrite laser in β‐BaB2O4. Applied Physics Letters, 54, 1206-1208(1989).

    [73] S IMAI. Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers. IEEE Journal of Quantum Electronics, 34, 573-576(1998).

    [74] Pan QING, Xiao-ping YANG. Long pulse, high energy output at 365 nm from an frequency-doubled Alexandrite laser. Optics Communications, 200, 309-314(2001).

    [75] Shu-huang LIU, Jing-jiao LIU, Li-jun WANG. Tunable ultraviolet laser source from a frequency doubled alexandrite laser, 6782, 67822Y(2007).

    [77] Xiao-dong YANG, Bin OUYANG, Chuan-dong LI. Research on temperature characteristics of an alexandrite laser. Acta Optica Sinica, 15, 74-77(1995).

    [78] Shi-ying WANG. Tunable alexandrite laser and test research of Q-switch(2003).

    [79] Shu-hang LIU, Jing-jiao LIU, Li-jun WANG. Design and experimental research of tunable alexandrite laser in the visible range. Journal of Optoelectronics·Laser, 19, 326-330(2008).

    [80] Yue SONG, Zhi-min WANG, Feng-feng ZHANG. Continuous-wave alexandrite laser pumped by 638 nm and 532 nm lasers. http:∥kns.cnki.net/kcms/detail/12.1261.TN.20200810.1510.008.html

    [81] Chen GUAN, Zhen-hua CONG, Zhao-jun LIU. 10.5-W laser output at 760 nm from laser diode pumped alexandrite crystal. Chinese Journal of Lasers, 47, 1015001(2020).

    [82] AGE LIGHT. PALTM Pulsed alexandrite laser system. http:∥lightage.com/web/pal-pulsed-alexandrite-laser/

    [83] S TATLIDEDE, O EGEMEN, A SALTAT. Hair removal with the long-pulse alexandrite laser. Aesthetic Surgery Journal, 25, 138-143(2005).

    [84] S A LAUGHLIN, D K DUDLEY. Long-term hair removal using a 3-millisecond alexandrite laser. Journal of Cutaneous Medicine and Surgery, 4, 83-88(2000).

    [85] R E FITZPATRICK, M P GOLDMAN. Tattoo removal with the Alexandrite laser: a clinical and histologic study, 1876, 110-111(1993).

    [86] T S ALSTER. Q-switched alexandrite laser treatment (755 nm) of professional and amateur tattoos. Journal of The American Academy of Dermatology, 33, 69-73(1995).

    [87] M L LEUENBERGER, M W MULAS, T R HATA. Comparison of the Q-switched alexandrite, Nd:YAG, and Ruby lasers in treating blue-black tattoos. Dermatologic Surgery, 25, 10-14(1999).

    [88] D J GOLDBERG. Laser treatment of pigmented lesions. Dermatologic Clinics, 15, 397-407(1997).

    [89] H J SHIN. Treatment of melasma and post-inflammatory hyperpigmentation by a picosecond 755-nm alexandrite laser in Asian patients. Annals of Dermatology, 29, 779-781(2017).

    [90] CLARITYTM. https:∥www.duallaser.fi/wp-content/uploads/2015/02/CLARITY_launching-PPT_4100607440_20121108.pdf

    [91] M J DAMZEN, G M THOMAS, A TEPPITAKSAK. Progress in diode-pumped Alexandrite lasers as a new resource for future space Lidar missions, 10563(2014).

    [92] J A MCKAY, T D WILKERSON. The diode-pumped alexandrite laser for DIAL and Doppler lidar, 3127, 124-132(1997).

    [93] D BRUNEAU, T A D LIONS, P QUAGLIA. Injection-seeded pulsed alexandrite laser for differential absorption lidar application. Applied Optics, 33, 3941-3950(1994).

    [94] P PONSARDIN, N S HIGDON, B E GROSSMANN. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system. Applied Optics, 33, 6439-6450(1994).

    [95] V WULFMEYER, J BÖSENBERG. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. Optics Letters, 21, 1150-1152(1996).

    [96] V WULFMEYER. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter. Applied Optics, 37, 3804-3824(1998).

    [97] J R MILLER, E W HARE, J WU. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. International Journal of Remote Sensing, 11, 1755-1773(1990).

    [98] U V ZAHN, J HÖFFNER. Mesopause temperature profiling by potassium lidar. Geophysical Research Letters, 23, 141-144(1996).

    [99] J HÖFFNER, F J LÜBKEN. Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N). Journal of Geophysical Research, 112(2007).

    [100] C FRICKE-BEGEMANN, M ALPERS, J HӦFFNER. Daylight rejection with a new receiver for potassium resonance temperature lidars. Optics Letters, 27, 1932-1934(2002).

    [101] M STROTKAMP, A MUNK, B JUNGBLUTH. Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar. CEAS Space Journal, 11, 413-422(2019).

    [102] C XU, W W WEBB. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B, 13, 481-491(1996).

    [103] A DIASPRO, P BIANCHINI, G VICIDOMINI. Multi-photon excitation microscopy. Biomedical Engineering Online, 5, 36(2006).

    [104] J M GIRKIN. Optical physics enables advances in multiphoton imaging. Journal of Physics D: Applied Physics, 36(2003).

    [105] J M GIRKIN, G MCCONNELL. Advances in laser sources for confocal and multiphoton microscopy. Microscopy Research and Technique, 67, 8-14(2005).

    [106] W DENK, J H STRICKLER, W W WEBB. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [107] K TAIRA, T HASHIMOTO, H YOKOYAMA. Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode. Optics Express, 15, 2454-2458(2007).

    [108] G MCCONNELL, G L SMITH, J M GIRKIN. Two-photon microscopy of fura-2-loaded cardiac myocytes with an all-solid-state tunable and visible femtosecond laser source. Optics Letters, 28, 1742-1744(2003).

    [109] W J DENK, J H STRICKLER, W W WEBB. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [110] W R ZIPFEL, R M WILLIAMS, W W WEBB. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 21, 1369-1377(2003).

    [111] C XU, W W WEBB. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B, 13, 481-491(1996).

    [112] S SAKADŽIĆ, U DEMIRBAS, T R MEMPEL. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser. Optics Express, 16, 20848-20863(2008).

    Zhi-gang ZHAO, Chen GUAN, Zhen-hua CONG, Xing-yu ZHANG, Zhen ZHU, Shi-wu WANG, Yi NIE, Yang LIU, Zhao-jun LIU. Research Progresses of Alexandrite Solid-state Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 77
    Download Citation