• Acta Photonica Sinica
  • Vol. 49, Issue 11, 77 (2020)
Zhi-gang ZHAO1、2, Chen GUAN1、2, Zhen-hua CONG1、2, Xing-yu ZHANG1、2, Zhen ZHU3, Shi-wu WANG4, Yi NIE4, Yang LIU1、2, and Zhao-jun LIU1、2、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technology and Application, Qingdao, Shandong6637, China
  • 3Huaguang Optoelectronics Co., Ltd., Jinan250101, China
  • 4Crystech Co., Ltd., Qingdao, Shandong266000, China
  • show less
    DOI: 10.3788/gzxb20204911.1149006 Cite this Article
    Zhi-gang ZHAO, Chen GUAN, Zhen-hua CONG, Xing-yu ZHANG, Zhen ZHU, Shi-wu WANG, Yi NIE, Yang LIU, Zhao-jun LIU. Research Progresses of Alexandrite Solid-state Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 77 Copy Citation Text show less
    c-axis view of alexandrite structure[21] and the image of alexandrite crystals grown by the Czochralski method in Crystech Co., Ltd.
    Fig. 1. c-axis view of alexandrite structure[21] and the image of alexandrite crystals grown by the Czochralski method in Crystech Co., Ltd.
    Simplified energy level diagram for the alexandrite crystal[22]
    Fig. 2. Simplified energy level diagram for the alexandrite crystal[22]
    Alexandrite absorption spectrum for Cr3+ dopant concentration of 0.063 at.% and alexandrite fluorescence rate spectra at 300 K[23]
    Fig. 3. Alexandrite absorption spectrum for Cr3+ dopant concentration of 0.063 at.% and alexandrite fluorescence rate spectra at 300 K[23]
    Schematic diagram of the single bounce alexandrite slab laser, the double-bounce alexandrite slab laser and the extended double bounce alexandrite slab laser[12]
    Fig. 4. Schematic diagram of the single bounce alexandrite slab laser, the double-bounce alexandrite slab laser and the extended double bounce alexandrite slab laser[12]
    Schematic diagram of diode-pumped alexandrite vortex laser[44]
    Fig. 5. Schematic diagram of diode-pumped alexandrite vortex laser[44]
    Pumping configuration with two diode modules and the resonator configuration of the alexandrite laser[14]
    Fig. 6. Pumping configuration with two diode modules and the resonator configuration of the alexandrite laser[14]
    Experimental arrangements for fiber-delivered polarized diode single-end-pumped alexandrite laser and double-pass-end-pumped alexandrite laser[45]
    Fig. 7. Experimental arrangements for fiber-delivered polarized diode single-end-pumped alexandrite laser and double-pass-end-pumped alexandrite laser[45]
    Effective emission cross section spectra of alexandrite for E∥b polarization at different crystal temperatures and variation of small signal gain with temperature[22]
    Fig. 8. Effective emission cross section spectra of alexandrite for E∥b polarization at different crystal temperatures and variation of small signal gain with temperature[22]
    Thermal lens dioptric power and laser power as a function of the absorbed pump power[48]
    Fig. 9. Thermal lens dioptric power and laser power as a function of the absorbed pump power[48]
    Schematic of double-end-pumped L-shaped alexandrite laser[13]
    Fig. 10. Schematic of double-end-pumped L-shaped alexandrite laser[13]
    Schematic layout of the blue LD pumped alexandrite laser system at cryogenic temperatures and within the temperature range of 300~400 K[49]
    Fig. 11. Schematic layout of the blue LD pumped alexandrite laser system at cryogenic temperatures and within the temperature range of 300~400 K[49]
    Schematic layout of alexandrite laser system for Q-switching[9]
    Fig. 12. Schematic layout of alexandrite laser system for Q-switching[9]
    Schematic of red LD-pumped Q-switched alexandrite laser and cavity-dumping Q-switched alexandrite laser[53]
    Fig. 13. Schematic of red LD-pumped Q-switched alexandrite laser and cavity-dumping Q-switched alexandrite laser[53]
    Schematic of Q-switched diode-pumped alexandrite ring laser[55]
    Fig. 14. Schematic of Q-switched diode-pumped alexandrite ring laser[55]
    Schematic of W-level Q-switched diode-pumped alexandrite ring laser[56]
    Fig. 15. Schematic of W-level Q-switched diode-pumped alexandrite ring laser[56]
    Setup of the experiment for LED-pumped alexandrite laser and the tunable multipass amplifier for a CW Ti:sapphire laser[59]
    Fig. 16. Setup of the experiment for LED-pumped alexandrite laser and the tunable multipass amplifier for a CW Ti:sapphire laser[59]
    Schematic diagram of 532 nm pumped KLM[62] and QD-SESAM passively mode-locked[63] alexandrite laser
    Fig. 17. Schematic diagram of 532 nm pumped KLM[62] and QD-SESAM passively mode-locked[63] alexandrite laser
    Schematic diagram of 532 nm laser pumped MPC KLM alexandrite laser[64] and graphene passively mode-locked alexandrite laser[65]
    Fig. 18. Schematic diagram of 532 nm laser pumped MPC KLM alexandrite laser[64] and graphene passively mode-locked alexandrite laser[65]
    Experimental setup for narrow linewidth alexandrite regenerative amplifier[66]
    Fig. 19. Experimental setup for narrow linewidth alexandrite regenerative amplifier[66]
    Experimental setup for chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier[67]
    Fig. 20. Experimental setup for chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier[67]
    System schematic of the alexandrite-pumped alexandrite regenerative amplifier[68]
    Fig. 21. System schematic of the alexandrite-pumped alexandrite regenerative amplifier[68]
    Experimental setup diagram of dual-end-pumped alexandrite laser[81]
    Fig. 22. Experimental setup diagram of dual-end-pumped alexandrite laser[81]
    Laser spectrum at maximum output power and beam qualities at different output powers[81]
    Fig. 23. Laser spectrum at maximum output power and beam qualities at different output powers[81]
    Laser-tissue absorption spectrum[90]
    Fig. 24. Laser-tissue absorption spectrum[90]
    Demonstration of a potassium layer measurement with a LD-pumped alexandrite laser[55] and a fashlamp-pumped alexandrite laser[100]
    Fig. 25. Demonstration of a potassium layer measurement with a LD-pumped alexandrite laser[55] and a fashlamp-pumped alexandrite laser[100]
    Multiphoton microscopy images of a mouse popliteal lymph node[112]
    Fig. 26. Multiphoton microscopy images of a mouse popliteal lymph node[112]
    Gain mediumCr3+:BeAl2O4 (Alexandrite)Ti3+:Al2O3 (Ti:sapphire)Cr3+:LiCaAlF6 (Cr:LiCAF)Cr3+:LiSrAlF6 (Cr:LiSAF)Cr3+:LiSrGaF6 (Cr:LiSGaF)Yb3+:Y3Al5O12 (Yb:YAG)
    Mass density ρ/(g·cm-3)3.693.982.993.453.894.56
    Melting point/°C1 8702 0408107667161 970

    Specific heat capacity

    Cp/(J·g-1·°C-1)

    1.050.7610.9350.8420.760.59
    Mohs hardness8.59~43~4~48.5

    Knoop hardness/

    (kg·mm-2)

    1 600~2 300

    1 800 (∥c)

    2 200 (∥a)

    -197-1 320

    Thermal conductivity

    κ/(W·m-1·K-1)

    23 (∥a-b-c)

    30.3 (∥a)

    32.5 (∥c)

    4.58 (∥a)

    5.14 (∥c)

    1, 1.8 (∥a)

    1.68, 3 (∥c)

    1.3 (∥a)

    2.6 (∥c)

    10

    Thermal expansion

    coefficient

    α/(×10-6K-1)

    6 (∥a)

    6 (∥b)

    7 (∥c)

    4.8 & 5.3

    22, 21 (∥a)

    3.6, 3.1 (∥c)

    22.2, 25,

    26 (∥a)

    -9.8, -10,

    -8.1 (∥c)

    12, 23 (∥a)

    0, -5.4 (∥c)

    6.7

    Thermal diffusivity

    D/(×10-3 cm2·s-1)

    6092.5

    16.4 (∥a)

    18.4 (∥c)

    6 (∥a)

    10 (∥c)

    4.4 (∥a)

    8.8 (∥c)

    37

    Young modulus

    E/(×109 Pa)

    46933596

    109 (avg)

    85 (∥c)

    120 (∥a)

    -280, 310
    Poisson's ratio ν~0.250.290.250.3-0.3

    Tensile (fracture)

    strength σf/(×106 Pa)

    457~948 (∥a)

    520 (∥b)

    400-38.5±8-200

    Fracture toughness

    K1c/(×106 Pa·m1/2)

    2.62.2

    0.31,

    0.18~0.37

    0.33, 0.4-1.4

    Thermal figure of merit

    RT'/(W·m-1/2)

    14220.53

    0.42 (∥a)

    0.80 (∥c)

    0.555.1

    Damage threshold/

    (J·cm-2)

    270 @ 12 ns

    7.8 @ 0.5 ps

    80 @ 50 ps

    210 @ 8 ns

    20~25

    @ 50 ps

    1.5 @ 20 ps

    8~24 @ 50 ps

    20~26

    @ 50 ps

    110 @ 4.5 ns
    Table 1. The related thermo-mechanical parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]
    Gain mediumCr3+:BeAl2O4 (Alexandrite)

    Ti3+:Al2O3

    (Ti:sapphire)

    Cr3+:LiCaAlF6 (Cr:LiCAF)Cr3+:LiSrAlF6 (Cr:LiSAF)Cr3+:LiSrGaF6 (Cr:LiSGaF)Yb3+:Y3Al5O12 (Yb:YAG)
    BirefringenceBiaxialNegative uniaxialPositive uniaxial

    Positive

    uniaxial

    Positive

    uniaxial

    Isotropic
    Refractive index n1.736 7 (∥a) 1.742 1 (∥b) 1.734 6 (∥c)

    1.765 5 (∥a)

    1.757 3 (∥c)

    1.380 (∥a)

    1.380 8 (∥c)

    1.387 3 (∥a)

    1.394 0 (∥c)

    1.389 3 (∥a)

    1.391 (∥c)

    1.82
    Nonlinear refractive index n2/(×10-16 cm2·W-1)

    2

    3.54

    3.2

    0.4

    0.36~0.66

    0.8

    0.52-2.15

    1.26.9

    Temperature dependence of refractive index

    dn/dT/(×10-6 ·K-1)

    5.5, 9.4 (∥a) 7, 8.3 (∥b) 14.9 (∥c)13

    4.2, -7.3 (∥a)

    4.6, -4.9 (∥c)

    -2.5, -4.5 (∥a)

    -4, -9.1 (∥c)

    -7, -2.7

    (∥a)

    -1.8 (∥c)

    9.9
    Group velocity dispersion/(fs2·mm-1)60.756.62422.7~2566.6
    Pump wavelength/nm

    550 (∥a)

    595 (∥b)

    570 (∥c)

    480630650630940
    Absorption bandwidth/nm

    90 (∥a)

    80 (∥b)

    70 (∥c)

    125901008512.5
    Peak absorption cross section σab/(×10-20 cm2)

    3.9 (∥a)

    19 (∥b)

    9 (∥c)

    6.4 (∥c)

    2.6 (∥a)

    1.3 (∥c)

    0.9 (∥a)

    4.5 (∥c)

    2.5 (∥a)

    3 (∥c)

    1.5 (∥a)

    0.83
    Maximum gain wavelength/nm7507907808558401 030
    Tuning range/nm

    714~818

    (300 K)

    660~1180720~887770~1 110777~9771 016~1 108
    Peak emission cross section σem/(×10-20 cm2)0.7 @ 22 °C

    41 (∥c)

    15 (∥a)

    1.3 (∥c)

    0.9 (∥a)

    4.8 (∥c)

    1.6 (∥a)

    3.3 (∥c)

    1.4 (∥a)

    2.1
    Room-temperature fluorescence lifetime τf /µs2623.21756788940
    σemτf/(×10-26 cm2·s)183 @ 22 °C1312283222901 975
    Crystal figure of merit3 0001502 1503 300~2 000-

    Gain saturation fluence

    Jsat/(J·cm-2)

    38 @ 22 °C0.6 (∥c)19.1 (∥c)4.8 (∥c)7.5 (∥c)

    8.8

    9.2

    Table 2. The spectroscopic and laser parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]
    YearWavelength/nmPower/WChip structureInstitution
    200864312

    0.4 mm bar, 20 emitting points,

    40 µm×1.5 mm

    Mitsubishi Electric Co., Japan[25]
    20126351.2

    5 µm×250 µm ridge-waveguide,

    2 mm resonator

    FBH, Germany[30]
    20146392.3

    Single emitting region,

    150 µm×3 mm

    nLight Co., US[29]
    201764420.1

    1 cm bar, 25 emitting points,

    60 µm×0.7 mm

    Sony Co., Japan[31]
    20186386

    Three emitting region,

    180 µm×1.5 mm

    Mitsubishi Electric Co., Japan [27]
    20196384.5

    Double emitting regions,

    150 µm×1.5 mm

    Ushio Opto Semiconductors Inc., Japan[28]
    20196403.9

    Single emitting region,

    100 µm×1.5 mm

    Huaguang Optoelectronics Co., China [32]
    Table 3. The research progress of 640 nm red LDs
    YearPump sourcePump parametersLaser output performanceLaser wavelengthRef.
    1979Xe flash lamp-500 mJ, 200 µs; 70 mJ, 120 ns701~794 nm[1]
    1980Flash lamp500 J, 1.5 kW500 mJ, 33 ns, 5 Hz701~818 nm[2]
    1980Flash lamp3.2 kWCW 6.5 W765 nm 744~788 nm[36]
    1980Flash lamp-500 mJ, 20 ns680.4 nm[38]
    1985Hg arc lamp6 kWCW 60 W-[18]
    1985Xe arc lamp8 kWCW 20W-[18]
    Table 4. Results of experiments based on flash lamp pumped alexandrite laser
    YearPump source

    Pump

    wavelength/nm

    Pump power/W

    Slope

    efficiency

    Output power/WTuning range/nmRemark
    1983[39]Krypton ion laser647.11.951%0.6726~802Krypton ion laser pumping
    1993[40]Dye laser6450.3664%0.15753.4Dye laser pumping
    1993[40]Red LD6402×0.2528%0.025753-
    2016[41]Green laser5321126%2.6715~800Green laser pumping
    2006[42]Green laser532531%1.4730~780-
    1990[43]Red LD680.40.0125%-751First LD pumping
    2005[11]Red LD680.41024%1.3750-
    2013[8]Red LD680.40.86534%0.2--
    2014[9]Red LD63964.549%26730~792

    Highest output power

    with LD pumping

    2017[12]Red LD6385637%12.2755.3-
    2020[14]Red LD63725-6.5752-
    2018[47]Red LD6363.0754.4%1.22714~818Longest tuning range
    2020[13]Red LD6363454.9%12.7725~808

    Highest slope efficiency

    with LD pumping

    2017[49]InGaN blue LD4443.520%0.326750First blue LD pumping
    2019[50]InGaN blue LD4453.539%0.57749.5-
    2020[16]Yellow laser5897.741%2.51727.2~787.3First yellow laser pumping
    Table 5. Results of continuous-wave alexandrite lasers (non-flashlamp pumping)
    YearPump sourceQ-switchingPulse energyPulse width

    Repetition

    frequency

    Output

    power

    Ref.
    2014Red LDPockels cell0.74 mJ92 ns1 kHz740 mW[9]
    2014Red LDPockels cell0.7 mJ58 ns100 Hz70 mW[9]
    2016Red LDPockels cell0.8 mJ350 ns35 Hz28 mW[52]
    2016Red LDPockels cell6.2 mJ-100 Hz62 mW[52]
    2016Red LDPockels cell (cavity dumped)510 µJ3 nsMulti-kHz-[53]
    2018Red LDSESAM550 ns27 kHz-[54]
    2018Red LDPockels cell1 mJ420 ns150 Hz150 mW[55]
    2018Red LDPockels cell1.7 mJ850 ns500 Hz850 mW[56]
    2019Red LDSelf-Q-switching9.8 μJ660 ns135 kHz1.32 W[57]
    Table 6. Results of Q-switched experiments based on alexandrite crystal
    YearPump sourceMode-lockingLaser wavelengthPulse width

    Repetition

    frequency

    Output powerRef.
    1982Flash lampOrganic dye725~745 nm8 ps12.5 Hz-[60]
    2016532 nm laserKLM755 nm170 fs80 MHz780 mW[62]
    2018532 nm laserQD-SESAM775 nm380 fs79.9 MHz295 mW[63]
    2018532 nm laserKLM750 nm70 fs5.6 MHz4 mW[64]
    2018532 nm laserGraphene750 nm65 fs5.56 MHz8 mW[65]
    Table 7. Results of mode-locking experiments based on alexandrite crystal
    YearCrystalTypeCrystal dimensionsWavelength

    Pulse

    energy

    Pulse widthRepetition frequency

    Highest

    conversion efficiency/%

    Ref.
    1983RDPType I SHG10 mm×10 mm×25 mm0.36~0.40 µm5 mJ0.1 µs--[69]
    1988BBOType I SHG9 mm×5 mm×7 mm378 nm105 mJ-4 Hz31%[70]
    1989BBOType I SHG4 mm×9 mm×7 mm378 nm~19 mJ-10 Hz26%[72]
    1989BBOType I THG8 mm×4 mm×7.5 mm252 nm~7.5 mJ-10 Hz10%*[72]
    1994BBOType I SHG8 mm373 nm~72 mJ-60 Hz28.6%[71]
    1994KDPType I THG-248 nm15 mJ-100 Hz-[71]
    1998BBOType I SHG5 mm×5 mm×5 mm375 nm90 mJ240 µs10 Hz-[73]
    2001BBOType I SHG5 mm×5 mm×10 mm365 nm186 mJ220 µs-4.2%[74]
    2007LBOType I SHG5 mm×4 mm×5 mm0.36~0.388 µm0.87 mJ--3.5%[75]
    2016BBOType I SHG4 mm×4 mm×10 mm379 nm184 µJ-1 kHz47%[53]
    Table 8. The research progress of ultraviolet alexandrite laser
    PropertyCNRSNASAMPIIAPAreciboPNL
    ApplicationDIALDIALDIALRes flRes flLab
    SeedernonenoneTi:Al2O3DiodeDiodeDiode
    Wavelength range /nm727~732725~785720~780770770+385750
    Linewidth /MHz<560560<150<20<50<20
    Freq stability /MHz<110<40063 rms--16
    Spectral purity>99.95%>99.85%>99.99%>99%--
    Pulse width /ns<500200<200275100~300140
    Pulse energy /mJ3030>50100200250
    Pulse rate /pps2010>15252020
    InstallationGroundAircraftGroundShipGroundGround
    Table 9. Some working lidars based on alexandrite lasers pumped by flashlamp[92]
    Zhi-gang ZHAO, Chen GUAN, Zhen-hua CONG, Xing-yu ZHANG, Zhen ZHU, Shi-wu WANG, Yi NIE, Yang LIU, Zhao-jun LIU. Research Progresses of Alexandrite Solid-state Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 77
    Download Citation