• Photonics Research
  • Vol. 7, Issue 1, 69 (2019)
Guanghao Rui1, Ying Li1, Sichao Zhou2, Yusong Wang1, Bing Gu1, Yiping Cui1、4、*, and Qiwen Zhan2、3、5、*
Author Affiliations
  • 1Advanced Photonics Center, Southeast University, Nanjing 210096, China
  • 2Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
  • 3School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 4e-mail: cyp@seu.edu.cn
  • 5e-mail: qzhan1@udayton.edu
  • show less
    DOI: 10.1364/PRJ.7.000069 Cite this Article Set citation alerts
    Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, Qiwen Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin[J]. Photonics Research, 2019, 7(1): 69 Copy Citation Text show less

    Abstract

    Optical trapping techniques hold great interest for their advantages that enable direct handling of nanoparticles. In this work, we study the optical trapping effects of a diffraction-limited focal field possessing an arbitrary photonic spin and propose a convenient method to manipulate the movement behavior of the trapped nanoparticles. In order to achieve controllable spin axis orientation and ellipticity of the tightly focused beam in three dimensions, an efficient method to analytically calculate and experimentally generate complex optical fields at the pupil plane of a high numerical aperture lens is developed. By numerically calculating the optical forces and torques of Rayleigh particles with spherical/ellipsoidal shape, we demonstrate that the interactions between the tunable photonic spin and nanoparticles lead to not only 3D trapping but also precise control of the nanoparticles’ movements in terms of stable orientation, rotational orientation, and rotation frequency. This versatile trapping method may open up new avenues for optical trapping and their applications in various scientific fields.
    N1=cos2β+cos2γ(cos2β+cos2γ)2+(cosαcosβ)2+(cosαcosγ)2,N2=(cosαcosβ)2+(cosαcosγ)2(cos2β+cos2γ)2+(cosαcosβ)2+(cosαcosγ)2.(1)

    View in Article

    E(r,φ)=1cosθ(A·ex+B·ey),A=ηeiΔϕ(cosθAsinθcosφsinθAcosθsinφcosφ+sinθAcosφsinφ)+N1(cosθcos2φsin2φ)+N2(cosθBsinθcosφsinθBcosθsinφcosφ+sinθBcosφsinφ),B=ηeiΔϕ(cosθAsinθsinφsinθAcosθsin2φsinθAcos2φ)+N1(cosθcosφsinφ+sinφcosφ)+N2(cosθBsinθsinφsinθBcosθsin2φsinθBcos2φ),(2)

    View in Article

    E(rp,ϕ,zp)=iλ0θmax02π(X·ex+Y·ey+Z·ez)×ejkrpsinθcos(φϕ)+jzpcosθsinθdθdφ,(3)

    View in Article

    X=ηeiΔϕ(cosθAsinθcosθcosφsinθAcos2θcosφsinφ+sinθAcosφsinφ)+[N1(cos2θcos2φsin2φ)N2(cosθBsinθcosθcosφsinθBcos2θcosφsinφ+sinθBcosφsinφ)],Y=ηeiΔϕ(cosθAsinθcosθsinφsinθAcos2θsin2φsinθAcos2φ)+[N1(sin2θsinφcosφ)N2(cosθBsinθcosθsinφsinθBcos2θsin2φsinθBcos2φ)],Z=ηeiΔϕ(cosθAsin2θsinθAcosθsinθsinφ)+[N1(cosθsinθcosφ)N2(cosθBsin2θsinθBcosθsinθsinφ)].(4)

    View in Article

    SIm{E*×E},(5)

    View in Article

    Pi=Si2(x0,y0)S02(x0,y0),i=1,2,3,(6)

    View in Article

    F=12Re{p(×E*)},(7)

    View in Article

    α=α01iα0k3/(6π),(8)

    View in Article

    α0=(α0x000α0y000α0z).(9)

    View in Article

    α0,i=13abcϵm(ω)/ϵ11+[ϵm(ω)/ϵ1]ni,(i=a,b,c),(10)

    View in Article

    ni=12abc0[(s+a2)2(s+b2)(s+c2)]1ds,(i=x)=12abc0[(s+a2)(s+b2)2(s+c2)]1ds,(i=y)=12abc0[(s+a2)(s+b2)(s+c2)2]1ds,(i=z),(11)

    View in Article

    Rij=(cosθ0cosϕ0sinϕ0sinθ0cosϕ0cosθ0sinϕ0cosϕ0sinθ0sinϕ0sinθ00cosθ0).(12)

    View in Article

    Γ=12|α|2R{1α0*(E×E*)}.(13)

    View in Article

    F=14ϵ0Re{α}|E|2+nσcSvϵ0σ2k0Im{(E·)E*},(14)

    View in Article

    Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, Qiwen Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin[J]. Photonics Research, 2019, 7(1): 69
    Download Citation