• Acta Optica Sinica
  • Vol. 44, Issue 5, 0506003 (2024)
Yue Zhang, Xiangwen Ye, Minghua Cao*, and Huiqin Wang
Author Affiliations
  • School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu , China
  • show less
    DOI: 10.3788/AOS231709 Cite this Article Set citation alerts
    Yue Zhang, Xiangwen Ye, Minghua Cao, Huiqin Wang. Deep Learning-Aided Faster-Than-Nyquist Rate Optical Spatial Pulse Position Modulation[J]. Acta Optica Sinica, 2024, 44(5): 0506003 Copy Citation Text show less
    OSPPM-FTN system model
    Fig. 1. OSPPM-FTN system model
    MNN decoder block diagram
    Fig. 2. MNN decoder block diagram
    Comparison of theoretical upper bound and simulation performance of BER in OSPPM-FTN system
    Fig. 3. Comparison of theoretical upper bound and simulation performance of BER in OSPPM-FTN system
    BER performance of OSPPM-FTN system with different parameters
    Fig. 4. BER performance of OSPPM-FTN system with different parameters
    Performance comparison of OSPPM and OSPPM-FTN systems. (a) BER performance of OSPPM and OSPPM-FTN systems with different τ; (b) transmission rate and spectral efficiency of OSPPM and OSPPM-FTN systems with different τ
    Fig. 5. Performance comparison of OSPPM and OSPPM-FTN systems. (a) BER performance of OSPPM and OSPPM-FTN systems with different τ; (b) transmission rate and spectral efficiency of OSPPM and OSPPM-FTN systems with different τ
    Relationship between loss and training rounds of MNN decoder
    Fig. 6. Relationship between loss and training rounds of MNN decoder
    Comparison of computational complexity of different decoders
    Fig. 7. Comparison of computational complexity of different decoders
    BER performance of ML and MNN decoders under different turbulence
    Fig. 8. BER performance of ML and MNN decoders under different turbulence
    Input bitsLD index4-PPM signal4PPM-FTN signal
    0000xs=[1 0 0 0]Txppm=[P1 0 0 0]xm=[ο1  P1+ο9  0+οq  0+ο27  0+οB]
    0001xs=[1 0 0 0]Txppm=[0 P1 0 0]xm=[ο1  0+ο9  P1+οq   0+ο27  0+οB]
    0010xs=[1 0 0 0]Txppm=[0 0 P1 0]xm=[ο1  0+ο9  0+οq   P1+ο27  0+οB]
    0011xs=[1 0 0 0]Txppm=[0 0 0 P1]xm=[ο1  0+ο9  0+οq   0+ο27  P1+οB]
    1110xs=[0 0 0 1]Txppm=[0 0 P1 0]xm=[ο1  0+ο9  0+οq   P1+ο27  0+οB]
    1111xs=[0 0 0 1]Txppm=[0 0 0 P1]xm=[ο1  0+ο9  0+οq   0+ο27  P1+οB]
    Table 1. Mapping table of OSPPM-FTN system
    ParameterCn2 /m-2 /3
    Strong turbulence2.5×10-11
    Middle turbulence6.0×10-13
    Weak turbulence9.0×10-16
    Table 2. Turbulence model parameters
    ModulationSpectral efficiency /(bit · s-1 · Hz-1Transmission rate /(bit/channel)
    OSPPM(log2NtD)/Dlog2Nt+log2D
    OSPPM-FTN[log2Nt+(log2D)/τ]/τDlog2Nt+(log2D)/τ
    Table 3. Spectral efficiency and transmission rate of different schemes
    ParameterContent
    Hidden layer activationReLU
    Output layer activationSigmoid
    Loss functionCross entropy loss
    OptimizerSGD
    Epoch30
    Learning rate0.001
    Number of training set6×106
    Number of validation set1×106
    Hidden nodes16, 24, 16
    Table 4. Parameters of MNN decoder
    Hidden layer numberAccuracy /%
    299.930015
    399.978038
    499.953223
    599.821631
    Table 5. Relationship between hidden layer number and decoding accuracy
    Learning rateAccuracy /%
    0.0100099.640017
    0.0010099.996005
    0.0001099.987218
    0.0000199.705215
    Table 6. Relationship between learning rate and decoding accuracy
    DecoderComplexity /FLOPs
    MLNrD2NtNrD+2NrD-1
    MNN2NrDG1+2G1G2+2G2G3+2G3NtD+NtD
    Table 7. Computational complexity of different decoders
    Yue Zhang, Xiangwen Ye, Minghua Cao, Huiqin Wang. Deep Learning-Aided Faster-Than-Nyquist Rate Optical Spatial Pulse Position Modulation[J]. Acta Optica Sinica, 2024, 44(5): 0506003
    Download Citation