• Photonics Research
  • Vol. 10, Issue 12, 2893 (2022)
Xinyu Sun1、2 and Feng Qiu3、*
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    DOI: 10.1364/PRJ.476688 Cite this Article Set citation alerts
    Xinyu Sun, Feng Qiu. Polarization independent high-speed spatial modulators based on an electro-optic polymer and silicon hybrid metasurface[J]. Photonics Research, 2022, 10(12): 2893 Copy Citation Text show less
    References

    [1] N. Savage. Digital spatial light modulators. Nat. Photonics, 3, 170-172(2009).

    [2] A. Smolyaninov, A. El Amili, F. Vallini, S. Pappert, Y. Fainman. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nat. Photonics, 13, 431-435(2019).

    [3] J. S. Ahearn, M. H. Weiler, S. B. Adams, T. P. McElwain, A. Stark, L. DePaulis, A. L. Sarafinas, T. Hongsmatip, R. J. Martin, B. Lane. Multiple quantum well (MQW) spatial light modulators (SLMs) for optical data processing and beam steering. Proc. SPIE, 4457, 43-53(2001).

    [4] B. Schwarz. Mapping the world in 3D. Nat. Photonics, 4, 429-430(2010).

    [5] S.-Q. Li, X. Xu, R. Maruthiyodan Veetil, V. Valuckas, R. Paniagua-Domínguez, A. I. Kuznetsov. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [6] A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, D. N. Neshev. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett., 110, 071109(2017).

    [7] H. Mbarak, S. M. Hamidi, E. Mohajerani, Y. Zaatar. Electrically driven flexible 2D plasmonic structure based on a nematic liquid crystal. J. Phys. D, 52, 415106(2019).

    [8] Z. Zhu, P. G. Evans, R. F. Haglund, J. G. Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett., 17, 4881-4885(2017).

    [9] Y. Kim, P. C. Wu, R. Sokhoyan, K. Mauser, R. Glaudell, G. Kafaie Shirmanesh, H. A. Atwater. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett., 19, 3961-3968(2019).

    [10] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [11] M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, R. Singh. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun., 9, 4056(2018).

    [12] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

    [13] S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, T. Čižmár. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express, 25, 29874-29884(2017).

    [14] Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian. Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients. Nat. Photonics, 1, 180-185(2007).

    [15] D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, L. R. Dalton. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem. Mater., 26, 872-874(2014).

    [16] T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, A. K.-Y. Jen. Ultralarge and thermally stable electro-optic activities from Diels–Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater., 18, 3038-3042(2006).

    [17] H. Xu, D. L. Elder, L. E. Johnson, Y. de Coene, S. R. Hammond, W. Vander Ghinst, K. Clays, L. R. Dalton, B. H. Robinson. Electro-optic activity in excess of 1000 pm V−1 achieved via theory-guided organic chromophore design. Adv. Mater., 33, 2104174(2021).

    [18] F. Qiu, Y. Han. Electro-optic polymer ring resonator modulators [Invited]. Chin. Opt. Lett., 19, 041301(2021).

    [19] S. J. Benight, D. H. Bale, B. C. Olbricht, L. R. Dalton. Organic electro-optics: understanding material structure/function relationships and device fabrication issues. J. Mater. Chem., 19, 7466-7475(2009).

    [20] S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, C. Koos. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci. Appl., 4, e255(2015).

    [21] M. Burla, C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, H. Massler, D. L. Elder, L. R. Dalton, J. Leuthold. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photon., 4, 056106(2019).

    [22] C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, J. Leuthold. Low-loss plasmon-assisted electro-optic modulator. Nature, 556, 483-486(2018).

    [23] I.-C. Benea-Chelmus, M. L. Meretska, D. L. Elder, M. Tamagnone, L. R. Dalton, F. Capasso. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun., 12, 5928(2021).

    [24] C. Kieninger, C. Kieninger, C. Kieninger, Y. Kutuvantavida, Y. Kutuvantavida, D. L. Elder, S. Wolf, H. Zwickel, M. Blaicher, J. N. Kemal, M. Lauermann, S. Randel, W. Freude, L. R. Dalton, C. Koos, C. Koos. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 5, 739-748(2018).

    [25] H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, S. Yokoyama. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation. Opt. Express, 25, 768-775(2017).

    [26] X. Sun, H. Yu, N. Deng, D. Ban, G. Liu, F. Qiu. Electro-optic polymer and silicon nitride hybrid spatial light modulators based on a metasurface. Opt. Express, 29, 25543-25551(2021).

    [27] X. Sun, G. Liu, H. Yu, D. Ban, N. Deng, F. Qiu. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer. Opt. Express, 29, 9207-9216(2021).

    [28] J. Zhang, Y. Kosugi, A. Otomo, Y.-L. Ho, J.-J. Delaunay, Y. Nakano, T. Tanemura. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. Appl. Phys. Lett., 113, 231102(2018).

    [29] A. Weiss, C. Frydendahl, J. Bar-David, R. Zektzer, E. Edrei, J. Engelberg, N. Mazurski, B. Desiatov, U. Levy. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photon., 9, 605-612(2022).

    [30] H. Weigand, V. V. Vogler-Neuling, M. R. Escalé, D. Pohl, F. U. Richter, A. Karvounis, F. Timpu, R. Grange. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photon., 8, 3004-3009(2021).

    [31] J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, W. Freude. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express, 16, 4177-4191(2008).

    [32] D. Bethell, J. J. Wolff, R. Wortmann. Organic materials for second-order non-linear optics. Advances in Physical Organic Chemistry, 32, 121-217(1999).

    [33] P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, G. K. Wong. Electro‐optical characterization of poled‐polymer films in transmission. Appl. Phys. Lett., 69, 901-903(1996).

    [34] G.-W. Lu, J. Hong, F. Qiu, A. M. Spring, T. Kashino, J. Oshima, M. Ozawa, H. Nawata, S. Yokoyama. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun., 11, 4224(2020).

    [35] S. Joseph, S. Sarkar, S. Khan, J. Joseph. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Adv. Opt. Mater., 9, 2001895(2021).

    [36] M.-C. Luo, F.-F. Ren, N. Gagrani, K. Qiu, Q. Wang, L. Yu, J. Ye, F. Yan, R. Zhang, H. H. Tan, C. Jagadish, X. Ji. Polarization-independent indium phosphide nanowire photodetectors. Adv. Opt. Mater., 8, 2000514(2020).

    [37] W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, Y. Wu. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt. Express, 23, A413-A418(2015).

    [38] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt., 32, 2606-2613(1993).

    [39] G. Quaranta, G. Basset, O. J. F. Martin, B. Gallinet. Recent advances in resonant waveguide gratings. Laser Photon. Rev., 12, 1800017(2018).

    [40] C. Liu, L. Chen, T. Wu, Y. Liu, J. Li, Y. Wang, Z. Yu, H. Ye, L. Yu. All-dielectric three-element transmissive Huygens’ metasurface performing anomalous refraction. Photon. Res., 7, 1501-1510(2019).

    [41] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [42] Y.-T. Lin, A. Hassanfiroozi, W.-R. Jiang, M.-Y. Liao, W.-J. Lee, P. C. Wu. Photoluminescence enhancement with all-dielectric coherent metasurfaces. Nanophotonics, 11, 2701-2709(2022).

    [43] L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K.-Y. Jen, R. M. Overney. Systematic nanoengineering of soft matter organic electro-optic materials. Chem. Mater., 23, 430-445(2011).

    [44] Y. Gao, R.-J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, D. Englund. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett., 15, 2001-2005(2015).

    [45] J. F. Shackelford, Y.-H. Han, S. Kim, S.-H. Kwon. CRC Materials Science and Engineering Handbook(2015).

    [46] Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, N. I. Zheludev. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett., 96, 143105(2010).

    [47] Y. Lee, J. Yun, S. Kim, M. Seo, S. In, H. Jeong, S. Lee, N. Park, T. D. Chung, B. Lee. High‐speed transmission control in gate‐tunable metasurfaces using hybrid plasmonic waveguide mode. Adv. Opt. Mater., 8, 2001256(2020).

    [48] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    Xinyu Sun, Feng Qiu. Polarization independent high-speed spatial modulators based on an electro-optic polymer and silicon hybrid metasurface[J]. Photonics Research, 2022, 10(12): 2893
    Download Citation