• Photonics Research
  • Vol. 10, Issue 6, 1453 (2022)
Alessio Buzzin*, Rita Asquini, Domenico Caputo, and Giampiero de Cesare
Author Affiliations
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
  • show less
    DOI: 10.1364/PRJ.454288 Cite this Article Set citation alerts
    Alessio Buzzin, Rita Asquini, Domenico Caputo, Giampiero de Cesare. Evanescent waveguide lab-on-chip for optical biosensing in food quality control[J]. Photonics Research, 2022, 10(6): 1453 Copy Citation Text show less
    References

    [1] L. Salgueiro, A. Martins, H. Correia. Raw materials: the importance of quality and safety: a review. Flavour Fragance J., 25, 253-271(2010).

    [2] S. Bansal, A. Singh, M. Mangal, A. K. Mangal, S. Kumar. Food adulteration: sources, health risks, and detection methods. Crit. Rev. Food Sci. Nutr., 57, 1174-1189(2017).

    [3] A. Berna. Metal oxide sensors for electronic noses and their application to food analysis. Sensors, 10, 3882-3910(2010).

    [4] I. Reinholds, V. Bartkevics, I. C. Silvis, S. M. van Ruth, S. Esslinger. Analytical techniques combined with chemometrics for authentication and determination of contaminants in condiments: a review. J. Food Compos. Anal., 44, 56-72(2015).

    [5] S. Svanberg, G. Zhao, H. Zhang, J. Huang, M. Lian, T. Li, S. Zhu, Y. Li, Z. Duan, H. Lin, K. Svanberg. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research. Opt. Express, 24, A515-A527(2016).

    [6] D. Hou, J. Zhang, Z. Yang, S. Liu, P. Huang, G. Zhang. Distribution water quality anomaly detection from UV optical sensor monitoring data by integrating principal component analysis with chi-square distribution. Opt. Express, 23, 17487-17510(2015).

    [7] D. Cozzolino. Recent trends on the use of infrared spectroscopy to trace and authenticate natural and agricultural food products. Appl. Spectrosc. Rev., 47, 518-530(2012).

    [8] H. J. Shin, S.-W. Choi, G. Ok. Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chem., 245, 282-288(2018).

    [9] A. Belay, G. Assefa. Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights. J. Laser Opt. Photon., 5, 4172(2018).

    [10] F. Jiménez-Márquez, J. Vázquez, J. Úbeda, J. Sánchez-Rojas. Low-cost and portable refractive optoelectronic device for measuring wine fermentation kinetics. Sens. Actuators B Chem., 178, 316-323(2013).

    [11] C. Lin, C. Liao, Y. Zhang, L. Xu, Y. Wang, C. Fu, K. Yang, J. Wang, J. He, Y. Wang. Optofluidic gutter oil discrimination based on a hybrid-waveguide coupler in fibre. Lab Chip, 18, 595-600(2018).

    [12] U. Biswas, J. K. Rakshit, G. K. Bharti. Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt. Quantum Electron., 52, 19(2020).

    [13] M. Rubab, H. M. Shahbaz, A. N. Olaimat, D.-H. Oh. Biosensors for rapid and sensitive detection of staphylococcus aureus in food. Biosens. Bioelectron., 105, 49-57(2018).

    [14] D. Zhang, Q. Liu. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron., 75, 273-284(2016).

    [15] G. Ok, K. Park, H. J. Kim, H. S. Chun, S.-W. Choi. High-speed terahertz imaging toward food quality inspection. Appl. Opt., 53, 1406-1412(2014).

    [16] M. H. Elshorbagy, A. Cuadrado, J. Alda. High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photon. Res., 5, 654-661(2017).

    [17] F. Arcadio, L. Zeni, D. Montemurro, C. Eramo, S. D. Ronza, C. Perri, G. D’Agostino, G. Chiaretti, G. Porto, N. Cennamo. Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers. Photon. Res., 9, 1397-1408(2021).

    [18] D. Caputo, G. de Cesare, C. Fanelli, A. Nascetti, A. Ricelli, R. Scipinotti. Amorphous silicon photosensors for detection of ochratoxin a in wine. IEEE Sens. J., 12, 2674-2679(2012).

    [19] V. Scognamiglio, V. Aurilia, N. Cennamo, P. Ringhieri, L. Iozzino, M. Tartaglia, M. Staiano, G. Ruggiero, P. Orlando, T. Labella, L. Zeni, A. Vitale, S. Dauria. D-galactose/D-glucose-binding protein from Escherichia coli as probe for a non-consuming glucose implantable fluorescence biosensor. Sensors, 7, 2484-2491(2007).

    [20] L. Mei, P. Lundin, M. Brydegaard, S. Gong, D. Tang, G. Somesfalean, S. He, S. Svanberg. Tea classification and quality assessment using laser-induced fluorescence and chemometric evaluation. Appl. Opt., 51, 803-811(2012).

    [21] V. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, S. Mukherji. Label-free fiber optic biosensor based on evanescent wave absorbance at 280 nm. Sens. Actuators B Chem., 143, 724-730(2010).

    [22] Q. Chai, H. Lee, S. Hong, Y. Lee, J. Park, J. Zhang, K. Oh. Nanoliter liquid refractive index sensing using a silica V-groove fiber interferometer. Photon. Res., 7, 792-797(2019).

    [23] A. Gowri, A. S. Rajamani, B. Ramakrishna, V. Sai. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring. Opt. Fiber Technol., 47, 15-20(2019).

    [24] V. Toccafondo, C. Oton. Robust and low-cost interrogation technique for integrated photonic biochemical sensors based on Mach–Zehnder interferometers. Photon. Res., 4, 57-60(2016).

    [25] A. Gastélum-Barrios, G. M. Soto-Zarazúa, A. Escamilla-Garca, M. Toledano-Ayala, G. Macas-Bobadilla, D. Jauregui-Vazquez. Optical methods based on ultraviolet, visible, and near-infrared spectra to estimate fat and protein in raw milk: a review. Sensors, 20, 3356(2020).

    [26] K. Tiefenthaler, W. Lukosz. Integrated optical switches and gas sensors. Opt. Lett., 9, 137-139(1984).

    [27] H. Kogelnik. Theory of optical waveguides. Guided-Wave Optoelectronics, 7-88(1988).

    [28] R. Asquini, A. Buzzin, D. Caputo, G. de Cesare. Integrated evanescent waveguide detector for optical sensing. IEEE Trans. Compon. Packag. Manuf. Technol., 8, 1180-1186(2018).

    [29] A. Buzzin, R. Asquini, D. Caputo, G. de Cesare. On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors, 21, 415(2021).

    [30] G. Liu, Y. Tian, Y. Kan. Fabrication of high-aspect-ratio microstructures using SU8 photoresist. Microsyst. Technol., 11, 343-346(2005).

    [31] A. Bertsch, P. Renaud. Special issue: 15 years of SU8 as MEMS material. Micromachines, 6, 790-792(2015).

    [32] C. Wang, S.-J. Cho, N.-Y. Kim. SU-8-based structural material for microelectronic processing applications. Mater. Manuf. Process., 28, 947-952(2013).

    [33] N. Vasylieva, S. Marinesco, D. Barbier, A. Sabac. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. Biosens. Bioelectron., 72, 148-155(2015).

    [34] P. Girault, N. Lorrain, L. Poffo, M. Guendouz, J. Lemaitre, C. Carré, M. Gadonna, D. Bosc, G. Vignaud. Integrated polymer micro-ring resonators for optical sensing applications. J. Appl. Phys., 117, 104504(2015).

    [35] S. Mapari, S. Mestry, S. Mhaske. Developments in pressure-sensitive adhesives: a review. Polym. Bull., 78, 4075-4108(2021).

    [36] V. Faustino, S. O. Catarino, R. Lima, G. Minas. Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J. Biomech., 49, 2280-2292(2016).

    [37] D. A. Bartholomeusz, R. W. Boutté, J. D. Andrade. Xurography: rapid prototyping of microstructures using a cutting plotter. J. Microelectromech. Syst., 14, 1364-1374(2005).

    [38] W. Calhoun, H. Maeta, S. Roy, L. Bali, S. Bali. Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures. J. Dairy Sci., 93, 3497-3504(2010).

    [39] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, D. Striakhilev. Amorphous silicon thin film transistor circuit integration for organic led displays on glass and plastic. IEEE J. Solid-State Circuits, 39, 1477-1486(2004).

    [40] M. Zangheri, F. D. Nardo, M. Mirasoli, L. Anfossi, A. Nascetti, D. Caputo, G. D. Cesare, M. Guardigli, C. Baggiani, A. Roda. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Bioanal. Chem., 408, 8869-8879(2016).

    [41] G. de Cesare, A. Nascetti, D. Caputo. Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors, 15, 12260-12272(2015).

    [42] M. Tucci, L. Serenelli, S. D. Iuliis, M. Izzi, G. D. Cesare, D. Caputo. Back contact formation for p-type based a-si:h/c-si heterojunction solar cells. Phys. Status Solidi C, 8, 932-935(2010).

    [43] S. Z. Oo, A. Tarazona, A. Z. Khokhar, R. Petra, Y. Franz, G. Z. Mashanovich, G. T. Reed, A. C. Peacock, H. M. H. Chong. Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices. Photon. Res., 7, 193-200(2019).

    [44] R. A. Street, K. Winer. Material properties of hydrogenated amorphous silicon. Handbook of Semiconductor Technology Set, 541-595(2010).

    [45] T. Minami. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 20, S35-S44(2005).

    [46] E. Li, B. A. Nia, B. Zhou, A. X. Wang. Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photon. Res., 7, 473-477(2019).

    [47] M. Nathan, O. Levy, I. Goldfarb, A. Ruzin. Monolithic coupling of a SU8 waveguide to a silicon photodiode. J. Appl. Phys., 94, 7932-7934(2003).

    [48] Y. H. Won, P. C. Jaussaud, G. H. Chartier. Three-prism loss measurements of optical waveguides. Appl. Phys. Lett., 37, 269-271(1980).

    [49] J. Abdul-Hadi, M. A. Gauthier, M. Packirisamy. Silicon-free, low-loss and high contrast polymer multimode waveguides. J. Micromech. Microeng., 27, 105006(2017).

    [50] C. F. Nascimento, P. M. Santos, E. R. Pereira-Filho, F. R. Rocha. Recent advances on determination of milk adulterants. Food Chem., 221, 1232-1244(2017).

    [51] H. E. Lippman, J.-F. Desjeux, Z.-Y. Ding, K. Tontisirin, R. Uauy, R. A. Pedro, P. V. Dael. Nutrient recommendations for growing-up milk: a report of an expert panel. Crit. Rev. Food Sci. Nutr., 56, 141-145(2013).

    [52] A. Gastélum-Barrios, G. M. Soto-Zarazúa, J. F. Garca-Trejo, J. M. Sierra-Hernandez, D. Jauregui-Vazquez. A new method for total fat detection in raw milk based on dual low-coherence interferometer. Sensors, 19, 4562(2019).

    [53] K. McCarthy, K. Lopetcharat, M. Drake. Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk. J. Dairy Sci., 100, 1702-1711(2017).

    [54] B. Aernouts, R. V. Beers, R. Watté, T. Huybrechts, J. Lammertyn, W. Saeys. Visible and near-infrared bulk optical properties of raw milk. J. Dairy Sci., 98, 6727-6738(2015).

    [55] S. Stocker, F. Foschum, P. Krauter, F. Bergmann, A. Hohmann, C. S. Happ, A. Kienle. Broadband optical properties of milk. Appl. Spectrosc., 71, 951-962(2016).

    [56] A. Dave, D. Banwari, S. Srivastava, S. Sadistap. Optical sensing system for detecting water adulteration in milk. IEEE Global Humanitarian Technology Conference (GHTC), 634-639(2016).

    [57] A. Jääskeläinen, K.-E. Peiponen, J. Räty. On reflectometric measurement of a refractive index of milk. J. Dairy Sci., 84, 38-43(2001).

    [58] P. F. Fox, A. L. Kelly. Chemistry and biochemistry of milk constituents. Food Biochemistry and Food Processing, 442-464(2012).

    [59] T. Tamir. Beam and waveguide couplers. Integrated Optics, 83-137(1975).

    [60] H. Nishihara, M. Haruna, T. Suhara. Optical Integrated Circuits, 1(1989).

    [61] B. Aernouts, R. Van Beers, R. Watté, T. Huybrechts, J. Jordens, D. Vermeulen, T. Van Gerven, J. Lammertyn, W. Saeys. Effect of ultrasonic homogenization on the VIS/NIR bulk optical properties of milk. Colloids Surf. B, 126, 510-519(2015).

    Alessio Buzzin, Rita Asquini, Domenico Caputo, Giampiero de Cesare. Evanescent waveguide lab-on-chip for optical biosensing in food quality control[J]. Photonics Research, 2022, 10(6): 1453
    Download Citation