• Chinese Optics Letters
  • Vol. 22, Issue 1, 012502 (2024)
Peng Cao1、2, Tiancai Wang1、3, Hongling Peng1、4, Zhanguo Li5, Qiandong Zhuang6, and Wanhua Zheng1、2、3、4、*
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3College of Electronic and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5School of Physics, Changchun Normal University, Changchun 130022, China
  • 6Physics Department, Lancaster University, Lancaster LA1 4YB, UK
  • show less
    DOI: 10.3788/COL202422.012502 Cite this Article Set citation alerts
    Peng Cao, Tiancai Wang, Hongling Peng, Zhanguo Li, Qiandong Zhuang, Wanhua Zheng. Mid-wavelength nBn photodetector with high operating temperature and low dark current based on InAs/InAsSb superlattice absorber[J]. Chinese Optics Letters, 2024, 22(1): 012502 Copy Citation Text show less
    References

    [1] Y. Liu, Q. Yang, J. Liu et al. MWIR imaging experiments with large F-number optics on LEO spacecraft. Infrared Phys. Technol., 67, 315(2014).

    [2] Z. Wu, X. Wang. Non-uniformity correction for medium wave infrared focal plane array-based compressive imaging. Opt. Express, 28, 8541(2020).

    [3] S. Thibault, V. N. Mahajan, R. B. Johnson et al. Development of the infrared instrument for gas detection. Proc. SPIE, 10375, 103750R(2017).

    [4] K. Cawse-Nicholson, P. A. Townsend, D. Schimel et al. NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms. Remote Sens. Environ., 257, 112349(2021).

    [5] A. Evirgen, J. Abautret, J. P. Perez et al. Midwave infrared InSb nBn photodetector. Electron. Lett., 50, 1472(2014).

    [6] A. M. Itsuno, J. D. Phillips, S. Velicu. Design and modeling of HgCdTe nBn detectors. J. Electron. Mater., 40, 1624(2011).

    [7] M. Kopytko. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Phys. Technol., 64, 47(2014).

    [8] A. M. Itsuno, J. D. Phillips, S. Velicu. Mid-wave infrared HgCdTe nBn photodetector. Appl. Phys. Lett., 100, 161102(2012).

    [9] H. Lin, Z. Zhou, H. Xie et al. High-performance room-temperature extended-wavelength InAs-based middle-wavelength infrared photodetector. Phys. Status Solidi A, 218, 2100281(2021).

    [10] N. Gautam, S. Myers, A. V. Barve et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice. Appl. Phys. Lett., 101, 021106(2012).

    [11] E. Plis, B. Klein, S. Myers et al. High operating temperature midwave infrared InAs/GaSb superlattice photodetectors on (111) GaSb substrates. IEEE Electron Device Lett., 34, 426(2013).

    [12] S. P. Svensson, D. Donetsky, D. Wang et al. Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization. J. Cryst. Growth, 334, 103(2011).

    [13] T. Schuler-Sandy, S. Myers, B. Klein et al. Gallium free type II InAs/InAsxSb1-xsuperlattice photodetectors. Appl. Phys. Lett., 101, 071111(2012).

    [14] B. Liu, L. Zhu, Y. Liu et al. Temperature dependent growth of InAs/InAsSb superlattices by molecular beam epitaxy for HOT mid-wavelength infrared detectors. Mater. Sci. Semicond. Process., 163, 107590(2023).

    [15] D. Wu, J. Li, A. Dehzangi et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Adv., 10, 025018(2020).

    [16] A. Dehzangi, D. Wu, R. McClintock et al. Demonstration of planar type-II superlattice-based photodetectors using silicon ion-implantation. Photonics, 7, 68(2020).

    [17] J. Jiang, G. Wang, D. Wu et al. High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 microm cutoff wavelength spectra. Opt. Express, 30, 38208(2022).

    [18] J. Huang, S. Yan, T. Xue et al. Mid-wavelength InAs/InAsSb superlattice photodetector with background limited performance temperature higher than 160 K. IEEE Trans. Electron Devices, 69, 4392(2022).

    [19] J. Huang, Z. Dai, Z. Shen et al. High-speed mid-wave infrared InAs/InAsSb superlattice uni-traveling carrier photodetectors with different absorber doping. IEEE Trans. Electron Devices, 69, 6890(2022).

    [20] D. Z. Ting, S. B. Rafol, A. Khoshakhlagh et al. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines, 11, 958(2020).

    [21] A. Krier, M. Stone, Q. D. Zhuang et al. Mid-infrared electroluminescence at room temperature from InAsSb multi-quantum-well light-emitting diodes. Appl. Phys. Lett., 89, 091110(2006).

    [22] P. Christol, F. de Anda, V. Compean et al. Antimonide-based superlattice infrared barrier photodetectors. Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology, 45(2020).

    [23] Y. Teng, X. Hao, H. Zhu et al. Demonstration of MOCVD-grown long-wavelength infrared InAs/GaSb superlattice focal plane array. IEEE Access, 9, 60689(2021).

    [24] E. Delli, V. Letka, P. D. Hodgson et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photonics, 6, 538(2019).

    [25] D. Wu, J. Li, A. Dehzangi et al. High performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetectors with double barrier. Infrared Phys. Technol., 109, 103439(2020).

    [26] J. Huang, Z. Shen, Z. Wang et al. High-speed mid-wave infrared uni-traveling carrier photodetector based on InAs/InAsSb type-II superlattice. IEEE Electron Device Lett., 43, 745(2022).

    Peng Cao, Tiancai Wang, Hongling Peng, Zhanguo Li, Qiandong Zhuang, Wanhua Zheng. Mid-wavelength nBn photodetector with high operating temperature and low dark current based on InAs/InAsSb superlattice absorber[J]. Chinese Optics Letters, 2024, 22(1): 012502
    Download Citation