• Advanced Photonics
  • Vol. 4, Issue 3, 036002 (2022)
Guangzhen Li1、†, Luojia Wang1, Rui Ye1, Shijie Liu1, Yuanlin Zheng1、2, Luqi Yuan1、*, and Xianfeng Chen1、2、3、*
Author Affiliations
  • 1Shanghai Jiao Tong University, School of Physics and Astronomy, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai, China
  • 3Shandong Normal University, Collaborative Innovation Center of Light Manipulation and Applications, Jinan, China
  • show less
    DOI: 10.1117/1.AP.4.3.036002 Cite this Article Set citation alerts
    Guangzhen Li, Luojia Wang, Rui Ye, Shijie Liu, Yuanlin Zheng, Luqi Yuan, Xianfeng Chen. Observation of flat-band and band transition in the synthetic space[J]. Advanced Photonics, 2022, 4(3): 036002 Copy Citation Text show less
    References

    [1] L. Yuan et al. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [2] T. Ozawa, H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys., 1, 349-357(2019).

    [3] E. Lustig, M. Segev. Topological photonics in synthetic dimensions. Adv. Opt. Photonics, 13, 426-461(2021).

    [4] L. Yuan, A. Dutt, S. Fan. Synthetic frequency dimensions in dynamically modulated ring resonators. APL Photonics, 6, 071102(2021).

    [5] A. Schwartz, B. Fischer. Laser mode hyper-combs. Opt. Express, 21, 6196-6204(2013).

    [6] C. Qin et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett., 120, 133901(2018).

    [7] L. Yuan et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B, 97, 104105(2018).

    [8] E. Lustig et al. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [9] K. Wang et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl., 9, 132(2020).

    [10] A. Regensburger et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett., 107, 233902(2011).

    [11] A. Regensburger et al. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).

    [12] X. Luo et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun., 6, 7704(2015).

    [13] B. A. Bell et al. Spectral photonic lattices with complex long-range coupling. Optica, 4, 1433-1436(2017).

    [14] T. Ozawa, I. Carusotto. Synthetic dimensions with magnetic fields and local interactions in photonic lattices. Phys. Rev. Lett., 118, 013601(2017).

    [15] C. W. Peterson et al. Strong nonreciprocity in modulated resonator chains through synthetic electric and magnetic fields. Phys. Rev. Lett., 123, 063901(2019).

    [16] L. Yuan et al. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett., 122, 083903(2019).

    [17] D. Cheng et al. Arbitrary synthetic dimensions via multiboson dynamics on a one-dimensional lattice. Phys. Rev. Res., 3, 033069(2021).

    [18] G. Li et al. Single pulse manipulations in synthetic time-frequency space. Laser Photonics Rev., 16, 2100340(2022).

    [19] D. Jukić, H. Buljan. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A, 87, 013814(2013).

    [20] I. Petrides, H. M. Price, O. Zilberberg. Six-dimensional quantum Hall effect and three-dimensional topological pumps. Phys. Rev. B, 98, 125431(2018).

    [21] O. Zilberberg et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 553, 59-62(2018).

    [22] L. Yuan, Y. Shi, S. Fan. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett., 41, 741-744(2016).

    [23] T. Ozawa et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A, 93, 043827(2016).

    [24] A. Dutt et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun., 10, 3122(2019).

    [25] A. Dutt et al. A single photonic cavity with two independent physical synthetic dimensions. Science, 367, 59-64(2020).

    [26] G. Li et al. Dynamic band structure measurement in the synthetic space. Sci. Adv., 7, eabe4335(2021).

    [27] S. Weidemann et al. Topological funneling of light. Science, 368, 311-314(2020).

    [28] Y. Hu et al. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica, 7, 1189-1194(2020).

    [29] H. Chen et al. Real-time observation of frequency Bloch oscillations with fibre loop modulation. Light Sci. Appl., 10, 48(2021).

    [30] K. Wang et al. Generating arbitrary topological windings of a non-Hermitian band. Science, 371, 1240-1245(2021).

    [31] A. Balčytis et al. Synthetic dimension band structures on a Si CMOS photonic platform. Sci. Adv., 8, eabk0468(2022).

    [32] K. Wang et al. Topological complex-energy braiding of non-hermitian bands. Nature, 598, 59-64(2021).

    [33] D. Yu et al. Topological holographic quench dynamics in a synthetic frequency dimension. Light Sci. Appl., 10, 209(2021).

    [34] D. Yu, L. Yuan, X. Chen. Isolated photonic flatband with the effective magnetic flux in a synthetic space including the frequency dimension. Laser Photonics Rev., 14, 2000041(2020).

    [35] Q. Lin et al. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv., 4, eaat2774(2018).

    [36] W. Zhang, X. Zhang. Quadrupole topological phases in the zero-dimensional optical cavity. Europhys. Lett., 131, 24004(2020).

    [37] A. Dutt et al. Higher-order topological insulators in synthetic dimensions. Light Sci. Appl., 9, 131(2020).

    [38] M. Hyrkäs, V. Apaja, M. Manninen. Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices. Phys. Rev. A, 87, 023614(2013).

    [39] F. Baboux et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 116, 066402(2016).

    [40] S. Rojas-Rojas et al. Quantum localized states in photonic flat-band lattices. Phys. Rev. A, 96, 043803(2017).

    [41] B. Real et al. Flat-band light dynamics in stub photonic lattices. Sci. Rep., 7, 15085(2017).

    [42] M. N. Huda, S. Kezilebieke, P. Liljeroth. Designer flat bands in quasi-one-dimensional atomic lattices. Phys. Rev. Res., 2, 043426(2020).

    [43] R. A. Vicencio et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett., 114, 245503(2015).

    [44] S. Mukherjee et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett., 114, 245504(2015).

    [45] D. Leykam, A. Andreanov, S. Flach. Artificial flat band systems: from lattice models to experiments. Adv. Phys.: X, 3, 1473052(2018).

    [46] S. Xia et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett., 121, 263902(2018).

    [47] J. Ma et al. Direct observation of flatband loop states arising from nontrivial real-space topology. Phys. Rev. Lett., 124, 183901(2020).

    [48] P. Karki, J. Paulose. Stopping and reversing sound via dynamic dispersion tuning in a phononic metamaterial. Phys. Rev. Appl., 15, 034083(2021).

    [49] R. A. V. Poblete. Photonic flat band dynamics. Adv. Phys. X, 6, 1878057(2021).

    [50] M. O. Scully, M. S. Zubairy. Quantum Optics(1997).

    [51] T. Wildi et al. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun., 11, 4146(2020).

    [52] T. Tetsumoto et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics, 15, 516-522(2021).

    [53] See Supplemental Material for more details on the theory of band structure measurement in two rings and the experimental setup details.

    [54] T. S. Huang, H. J. Nussbaumer. The fast Fourier transform. Fast Fourier Transform and Convolution Algorithms, 80-111(1981).

    [55] M. F. Yanik, S. Fan. Stopping light all optically. Phys. Rev. Lett., 92, 083901(2004).

    [56] S. Sandhu et al. Dynamically tuned coupled-resonator delay lines can be nearly dispersion free. Opt. Lett., 31, 1985-1987(2006).

    [57] B. Peng et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [58] M. Wimmer et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun., 6, 7782(2015).

    [59] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [60] Y. Song et al. Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl., 14, 064076(2020).

    [61] Q. Guo et al. Experimental observation of non-Abelian topological charges and edge states. Nature, 594, 195-200(2021).

    [62] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [63] J. Boutari et al. Large scale quantum walks by means of optical fiber cavities. J. Opt., 18, 094007(2016).

    [64] C. Chen et al. Observation of topologically protected edge states in a photonic two-dimensional quantum walk. Phys. Rev. Lett., 121, 100502(2018).

    [65] H. Chalabi et al. Synthetic gauge field for two-dimensional time-multiplexed quantum random walks. Phys. Rev. Lett., 123, 150503(2019).

    [66] C. Joshi et al. Frequency-domain quantum interference with correlated photons from an integrated microresonator. Phys. Rev. Lett., 124, 143601(2020).

    Guangzhen Li, Luojia Wang, Rui Ye, Shijie Liu, Yuanlin Zheng, Luqi Yuan, Xianfeng Chen. Observation of flat-band and band transition in the synthetic space[J]. Advanced Photonics, 2022, 4(3): 036002
    Download Citation