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Abstract. Constructions of synthetic lattices in modulated ring resonators attract growing attention to inter-
esting physics beyond the geometric dimensionality, where complicated connectivities between resonant
frequency modes are explored in many theoretical proposals. We implement experimental demonstration of
generating a stub lattice along the frequency axis of light, in two coupled ring resonators of different lengths,
with the longer one dynamically modulated. Such a synthetic photonic structure intrinsically exhibits the
physics of flat band. We show that the time-resolved band structure read-out from the drop-port output of the
excited ring is the intensity projection of the band structure onto a specific resonant mode in the synthetic
momentum space, where gapped flat band, mode localization effect, and flat-to-nonflat band transition are
observed in experiments and verified by simulations. This work provides evidence for constructing a synthetic
stub lattice using two different rings, which, hence, makes a solid step toward experimentally constructing
complicated lattices in multiple rings associated with synthetic frequency dimensions.
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1 Introduction
Synthetic dimensions in photonics have attracted broad interest
in recent years.1–4 They promise new ways to study fundamental
physical phenomena with exotic artificial connectivities5–9 and
manipulate light in various ways,10–18 pointing toward explora-
tion of higher-dimensional physics, beyond three dimensions.19–21

Among recent experimental achievements, different degrees of
freedom of light, including arrival times of pulses,10,11 frequen-
cies,22–24 and modal dimensions,8 have been used to construct
synthetic dimensions. Hence, a variety of novel physics have
been demonstrated in synthetic dimensions, such as the pho-
tonic topological insulator,8 the Hall ladder with effective mag-
netic flux,25 the trajectory of dynamic band structures,26 and the

topological funneling with non-Hermitian physics,27 physical
models of which are hard to build in structures with only spatial
dimensions.

Among these platforms, the dynamically modulated ring
resonator system has manifested as a powerful platform where
resonant modes with equally spaced frequencies are coupled
by external modulation, and then the synthetic frequency dimen-
sion is created.22,23 The modulation applied by external voltages
provides the unique advantages of breaking the constraint of
fixed geometric structures after fabrication and thus provides
an important possibility of achieving complicated functional-
ities with great experimental flexibility and reconfigurability.4

Experimental implementations have been performed in ring
resonator systems including fiber loops or on-chip micro-
rings,24–26,28–31 and physical phenomena including band struc-
tures measurements,24,26 spectral Bloch oscillations,29 and
non-Hermitian topology30,32 have been shown, where one ring
or two identical rings have been used. On the other hand,

*Address all correspondence to Luqi Yuan, yuanluqi@sjtu.edu.cn; Xianfeng Chen,
xfchen@sjtu.edu.cn.
†These authors contributed equally to this work.

Research Article

Advanced Photonics 036002-1 May/Jun 2022 • Vol. 4(3)

https://orcid.org/0000-0001-9481-0247
https://doi.org/10.1117/1.AP.4.3.036002
https://doi.org/10.1117/1.AP.4.3.036002
https://doi.org/10.1117/1.AP.4.3.036002
https://doi.org/10.1117/1.AP.4.3.036002
https://doi.org/10.1117/1.AP.4.3.036002
https://doi.org/10.1117/1.AP.4.3.036002
mailto:yuanluqi@sjtu.edu.cn
mailto:yuanluqi@sjtu.edu.cn
mailto:yuanluqi@sjtu.edu.cn
mailto:xfchen@sjtu.edu.cn


theoretical proposals have been explored where formations of
photonic lattice with different lengths of rings can enable in-
triguing studies of rich physics, such as the Haldane model,7

topological quench dynamics,33 two-dimensional Lieb lattice,34

three-dimensional topological insulator,35 and high-order topol-
ogies.36,37 However, to realize these theoretical proposals
requires constructing complicated lattice structures beyond sim-
ple lines or square geometries in synthetic space in two or more
rings of different lengths. Therefore, as a crucial step further,
one desires to first prove the capability of creating a complex
lattice in two coupled rings of different lengths in the ex-
periment.

In this work, we experimentally couple two rings of different
lengths, where one ring undergoes the dynamic modulation, and
construct a photonic stub lattice (also called one-dimensional
Lieb lattice)38–42 associated with synthetic frequency dimension.
Such a configuration is not straightforward to construct, com-
pared with lattices in one ring24,26 or in two identical rings.32 One
intrinsic feature of the stub lattice is the natural existence of
the flat (dispersionless) band.43–49 In our experiments, the time-
resolved energy bands from the drop-port output of the excited
ring are obtained, corresponding to the projection of the band
structures of the stub lattice, which, however, is on the synthetic
dimension. Moreover, by exciting the resonant modes through
the selected input port of one ring and recording the output
transmission from the same ring, we observe the effective locali-
zation of the resonant modes near the flat band. Such a flat band
in synthetic space can further be modified by adding the long-
range couplings in the modulation, which leads to the transition
from the flat to nonflat bands. By combining theoretical analy-
sis, we show that coupling two rings at different lengths leads
to experimental observations where bands are projected onto
superposition modes, which is very different from previous
works on flat-band physics. Such a feature is unique in the plat-
form of synthetic dimensions with modulated ring resonators,
so our work, therefore, exhibits a crucial step toward con-
structing more complicated synthetic lattices in multiple rings
of different lengths.

2 Materials and Methods
We start by illustrating the model of two modulated rings of
different lengths, labeled as A and B in Fig. 1(a). In the absence
of group velocity dispersion, the ring resonator supports a set
of modes with equally spaced frequencies. If we set the central
resonant frequency at ω0, the n’th mode in the ring AðBÞ has the
frequency ωAðBÞ;n ¼ ω0 þ nΩAðBÞ, where ΩAðBÞ ¼ 2πvg=LAðBÞ
is the free spectral range (FSR) of ring A ðBÞ, and vg is the group
velocity. We consider the length of ring A (LA) twice as long as
the length of ring B (LB), i.e., LA ¼ 2LB, which gives
2ΩA ¼ ΩB ≡ Ω. The electro-optic modulator (EOM) is placed
inside ring A with the modulation frequency ΩM ¼ Ω=2, the
modulation strength g, and the modulation phase ϕ, which pro-
vides the connectivity between adjacent resonant modes in ring
A, while there is no modulator in ring B, so resonant modes in
ring B remain unconnected. Two resonant modes in two rings
at the same frequency can be coupled through a fiber coupler
with the coupling strength κ [see Fig. 1(b)]. Therefore, three
types of modes exist in the system, defined as An, Bn, and Cn,
where An and Cn are the resonant modes at frequencies ωn and
ωn þ Ω=2 in ring A, and Bn is the resonant mode at frequency
ωn in ring B with ωn ¼ ω0 þ nΩ. In particular, modes An and

Bn are coupled for the same n, while An is coupled to Cn−1 and
Cn through the modulation under the lowest-order approxima-
tion, resulting in the synthetic lattice shown in Fig. 1(b).

The corresponding tight-binding Hamiltonian of the sys-
tem is34

H ¼
X
n

½ωnða†nan þ b†nbnÞ þ ðωn þΩ=2Þc†ncn�

þ
X
n

½κa†nbn þ 2g cosðΩt=2þ ϕÞða†ncn þ a†ncn−1Þ þ h:c:�;

(1)

where a†n, b
†
n, and c†n (an, bn, and cn) are the creation (annihi-

lation) operators for the modes An, Bn, and Cn, respectively.
Equation (1) can be simplified into the interaction picture by
taking the rotating-wave approximation,50 which results in

Hc ¼
X
n

½κa†nbn þ gða†ncneiϕ þ a†ncn−1e−iϕÞ þ h:c:�: (2)

Equation (2) describes the Hamiltonian of a synthetic lattice
structure, which is analog to the spatial stub lattice,38–42 but it
is along the frequency axis of light.

To understand the underlying physics of the Hamiltonian de-
scribed in Eq. (2), we can rewrite Eq. (2) into the kf space as
follows:

Hk ¼
X
kf

½κa†kfbkf þ 2g cosðkfΩ=2þ ϕÞa†kf ckf þ h:c:�; (3)

where kf is the wave vector reciprocal to the frequency dimen-
sion acting as a time variable.4 The corresponding photonic band
structure of the system is then given as

0

0

2

π 2π
–2

BA

g
κ

E
O

M

(a)

(b)

(c)

fk

f

nA

nB

nC

/ 2nn/ 2

/
E

B in

B out

A in

A out

Fig. 1 Configuration of a synthetic photonic stub lattice. (a) Two
coupled ring resonators, where the FSR of ring A is half of the
FSR of ring B, i.e., 2ΩA ¼ ΩB ≡Ω. Ring A undergoes dynamic
modulation by placing an EOM with the modulation frequency
ΩM ¼ Ω= 2. Waveguides are connected to rings for input/output
signals. (b) The system in (a) can be mapped into a photonic
stub lattice along the synthetic frequency dimension (f ), with
An , Bn , and Cn indicating three types of lattice sites. (c) The cor-
responding band structures of the synthetic stub lattice in (b) with
g ¼ κ and ϕ ¼ −0.5π.
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εkf;0 ¼ 0; εkf;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2g cosðkfΩ=2þ ϕÞ�2 þ κ2

q
; (4)

where εkf;j ðj ¼ 0;�Þ are the eigenvalues from Eq. (3), corre-
sponding to three bands plotted in Fig. 1(c) within the first
Brillouin zone with kf ∈ ½0,2π=Ω�. One can see a flat band
εkf;0 in the middle gapped from the upper and lower dispersive
bands εkf;�, which indicates that light can be efficiently local-
ized in the flat band without scattering.44–47 Let ψkf;j ¼
ðψA

kf;j
;ψB

kf;j
;ψC

kf;j
ÞT be the eigenstates corresponding to εkf;j,

with ψA
kf;j

, ψB
kf;j

, and ψC
kf;j

being the projection of the eigenstates
on the three modes (Ak, Bk, and Ck) in the kf space, and then we
have

ψkf;0 ¼ ð0;−G; κÞT�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ κ2

p
;ψkf;�

¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ κ2

p
; κ; G

�
T
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðκ2 þ G2Þ
q

; (5)

with G ¼ 2g cosðkfΩ=2þ ϕÞ. One notes that the flat band
(j ¼ 0) has no projection onto mode Ak due to ψA

kf;0
¼ 0, while

the two dispersive bands (j ¼ �) are antisymmetrically pro-
jected onto mode Ak but symmetrically projected onto modes
Bk and Ck.

To implement the idea of the synthetic photonic stub lattice
described in Eq. (2) for the potential experimental demon-
stration, we continue with considering a realistic model of two
ring resonators coupled with input and output waveguides. In
the following, we consider two excitation cases by selectively
choosing the input/output ports, which are referred to as B in →
B out and A in → A out, as in Fig. 1(a). First, we inject the field
into the system through the input port of ring B and measure the
drop-port output of ring B as well (B in → B out), in which only
frequency mode Bn in ring B is directly excited. The normalized
drop-port transmission TB

out can be expressed in the kf space as
[see Eqs. (S10)–(S14) in the Supplementary Material]

TB
outðt ¼ kf;ΔωÞ ¼ γ2B

jψB
kf;j

j4
ðΔω − εkf;jÞ2 þ γ2

; (6)

where γB is the coupling strength between ring B and wave-
guides, γ is the total loss, and Δω is the frequency detuning.
εkf;j and ψB

kf;j
are determined by Eqs. (4) and (5), and j refers

to the term having corresponding energy closest to the input fre-
quency. Previous works have demonstrated that the photonic
band structure can be measured by time-resolved transmission
spectroscopy, where the drop-port output transmission signal is
obtained by scanning the frequency of the input laser linearly
with time.24,26 Therefore, Eq. (6) indicates that the band struc-
tures read out from the drop-port output of ring B exhibit the
projection of the band structure on mode Bk in kf space.

On the other hand, for the case of A in → A out, by changing
the input/output port to ring A, similar input/output coupled
amplitude equations can be obtained. The corresponding nor-
malized drop-port transmissions in the kf space are [see Eqs.
(S1)–(S9) in the Supplementary Material]

TA
outðt ¼ kf;ΔωÞ ¼ γ2A

jψA
kf;j

j2jψA
kf;j

þ ψC
kf;j

j2
ðΔω − εkf;jÞ2 þ γ2

; (7)

TA
outðt ¼ kf;Δωþ Ω=2Þ ¼ γ2A

jψC
kf;j

j2jψA
kf;j

þ ψC
kf;j

j2
ðΔω − εkf;jÞ2 þ γ2

; (8)

where γA is the waveguide resonator coupling strength of ring A.
Equations (7) and (8) refer to the situation of an input field
near resonance with the reference frequencies ω0 and ω0 þΩ=2,
respectively. This means that the band structure resolved from
the drop-port transmission through ring A is the projection of the
band structure on the superposition modes of Ak and Ck sepa-
rated by Ω=2 along the frequency dimension.

In experiments, we use two fiber ring resonators coupled to-
gether through a 2 × 2 fiber coupler with coupler ratio 70:30, as
shown in Fig. S1 in the Supplementary Material. The two rings
are excited separately by selectively choosing ring A or B as the
input port of the laser source (A in or B in), while the transmis-
sion is recorded from the corresponding drop port (A out or
B out). After calibration, the lengths of the two rings are LA ¼
20.4 m and LB ¼ 10.2 m, corresponding to ΩA ¼ 2π · 10 MHz
and ΩB ¼ 2π · 20 MHz. To form the synthetic stub lattice de-
scribed in Fig. 1(b), we drive the EOM in ring A by a sinusoidal
radio frequency (RF) signal in the form of VM cosðΩMtþ ϕÞ
with ΩM ¼ 2π · 10 MHz, and ϕ ¼ −0.5π.
3 Results
To demonstrate the construction of the synthetic photonic stub
lattice in the experiment, we perform the band structure mea-
surements by finely sweeping the frequency of the input laser
through multiple free-spectral ranges.26 We first inject the laser
source into the input port of ring B and measure the output trans-
mission spectra from the drop port of ring B (B in → B out).
Figures 2(a3)–2(d3) plot the measured output transmission sig-
nals, while each transmission spectrum contains multiple sinus-
oidal signals, as enlarged in Fig. S2(d) in the Supplementary
Material. By breaking the transmission signals into time slices
with the time window equaling one roundtrip time of ring B
(2π=Ω), i.e., the periodicity of the synthetic stub lattice, one gets
the time-resolved band structures, as shown in Figs. 2(a1)–
2(d1), with varied modulation amplitude VM. We calculate the
intensity projections of the band structure on mode Bk using
Eq. (6) and show the results in Figs. 2(a2)–2(d2) with γ ¼
0.07Ω, where the width of the bands results from the loss term
γ added in the coupled mode equations [see Eq. (S10) in the
Supplementary Material]. The vertical slice of the time-resolved
band structure at a fixed time (kf) exhibits a Lorentz function
for each of the three bands (j ¼ 0;�), with γ characterizing
the width of each band in Eq. (6), as plotted in Fig. S2(c) in
the Supplementary Material. Without modulation (VM ¼ 0),
coupled rings result in two Lorentzian resonances of the
unmodulated rings, which exhibit two resonances with separa-
tion 2κ due to energy splitting between two coupled resonant
modes An and Bn [see Fig. 2(a3)]. It leads to two straight energy
bands with constant intensity distributions in both experiment
[see Fig. 2(a1)] and theory [see Fig. 2(a2)]. The feature of
the synthetic stub lattice begins to manifest once the modulation
is applied, as shown in Figs. 2(b1)–2(d1), where one notices
that three bands exist, and the intensity distributions vary with
the modulation amplitude. For a small modulation amplitude
[see Fig. 2(b1) with VM ¼ 1.5 V], the energy of the eigenstate
mainly focuses on the upper and lower dispersive bands, which
transfers to the middle flat band when the modulation strength
becomes larger, as shown in Fig. 2(d1) with VM ¼ 2.5 V. The
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theoretical plots exhibit excellent agreement with experimental
measurements, which clearly shows that the energy of the
eigenstate flows from dispersive bands to the flat band when
increasing g [see Figs. 2(b2)–2(d2)]. Moreover, the intensity
distributions on the two dispersive bands have a symmetric
pattern within the period of kf ∈ ½0,2π=Ω�, which is consistent
with the analytical solutions in Eq. (5).

We then consider the case of A in → A out by switching the
input and output fibers to ring A. The output transmissions of
modes Ak and Ck separated by Ω=2 are measured simultane-
ously, as shown in Figs. 3(a3)–3(c3), where the scale of the
vertical axes is twice as large as the scale in Fig. 2. Since in
experiments the time window to break the measured output
transmission signals of ring A equals one roundtrip time of ring
A (4π=Ω), we measure a combination of intensity projections
of the band structure on Ak and Ck, which gives kf ∈ ½0,4π=Ω�,
as plotted in Figs. 3(a1)–3(c1). Theoretical results from Eqs. (7)
and (8) are plotted in Figs. 3(a2)–3(c2) with γ ¼ 0.07Ω. When
there is no modulation, one sees two nearby straight bands
near Δω=Ω ¼ 0.25 due to energy splitting from coupling be-
tween modes An and Bn and one single straight band near
Δω=Ω ¼ −0.25, referring to the resonance of Cn in both experi-
ment and theory [see Figs. 3(a1) and 3(a2)]. Note that the mode
splitting of the top two bands in Figs. 3(a1)–3(a3) is the same as

that in Figs. 2(a1)–2(a3), which is also characterized by 2κ.
When the modulation is applied, the band structures near
Δω=Ω ¼ �0.25 show different features. For upper bands near
Δω=Ω ¼ 0.25, one sees two dispersive bands, corresponding
to the band structure in Fig. 1(c) projected to modes Ak [see
Figs. 3(b1) and 3(c1)], which matches well with the calculated
results from Eq. (7) [see Figs. 3(b2) and 3(c2)]. On the other
hand, for lower bands near Δω=Ω ¼ −0.25, one can clearly
see three bands, with the middle one being flat. The intensity
projections of two dispersive bands on mode Ck are relatively
weak in both experiment and theory. Both intensity distributions
of the two dispersive bands on modes Ak and Ck have the
antisymmetric patterns within one period, which matches with
the theoretical result in Eq. (5). We shall emphasize that the
periodicity of the signal with a time window of 4π=Ω can also
be noticed from the superposition term jψA

kf;j
þ ψC

kf;j
j2, which

has unique characteristics from our system where signal ampli-
tudes from modes An and Cn are mixed in the experiment.
Furthermore, the roughness of transmission spectra in both
Figs. 2 and 3 originates from the small display of the frequency
detuning range for containing multiple sinusoidal signal periods
[see Fig. S2(d) in the Supplementary Material].26

Next, we measure the frequency mode distributions for the
case of B in → B out by the heterodyne detection method51,52 to
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Fig. 2 Band structure measurements for the case of B in → B out. (a1)–(d1) Experimentally ob-
served band structures with different modulation amplitudes VM . (a2)–(d2) Simulation results of
the projected output intensity distribution of the band structure on mode Bk , based on Eqs. (4)–(6),
where g takes different values with fixed κ ¼ 0.06Ω and ϕ ¼ −0.5π. (a3)–(d3) Measured transmis-
sion spectra from the drop port of ring B. The vertical axis represents the frequency detuning of
the input laser source normalized to Ω, while the bottom horizontal axis in (a1)–(d2) represents
one roundtrip time in ring B with the period of 2π=Ω.
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probe the localization effect of the flat band in the synthetic stub
lattice. We connect the acousto-optic modulation path (Fig. S1
in the Supplementary Material) for frequency shift, and use it to
interfere with the drop-port output of ring B by a 50:50 fiber
coupler.53 To show evolutions of frequency modes throughout
the whole band structure, we sweep the input laser frequency
near the resonance frequency ω0 and process the drop-port
output transmission through the fast Fourier transform.54

Figure 4(a) shows the experimentally resolved mode distribu-
tions as a function of frequency detuning Δω, where the inten-
sities of modes are well confined near Δω ∼ 0, which refers to
the flat band, but spreads over the dispersive bands at
Δω ∼�0.07Ω. We explicitly exhibit the mode intensity distri-
butions for two input frequencies in Fig. 4(b), which are Δω ¼
0 at the flat band and Δω ¼ 0.08Ω at the upper dispersive band,
respectively. For the input frequency at the flat band [see the left
part of Fig. 4(b)], one sees that the intensities of modes Bn
mainly locate at the zeroth and �1st modes with a very small
portion diverging to the �2nd modes. On the other hand, inten-
sities of modes experience spread for the input frequency
located at the dispersive band [see the right part of Fig. 4(b)].
Simulations are performed by solving Eq. (6) with sweeping the
input frequency and then Fourier transforming the transmitted
intensity, in which the loss is chosen as γ ¼ 0.03Ω for better
fitting with the experimental results. One can see a good agree-
ment between experimental measurement in Figs. 4(a) and 4(b)
and simulated results in Figs. 4(c) and 4(d), where the slight
discrepancy between experiments and simulations originates
from the experimental devices and the disturbance of the envi-
ronment. The stability of the system can be further improved by

utilizing polarization-maintaining fibers and devices or placing
the experimental setup in the vacuum chamber.

The existence of the flat band in the constructed synthetic
stub lattice is not dependent on the coupling coefficients, i.e.,
g and κ for the weak modulation condition.39 Further increase
of the modulation strength falls on the break of the synthetic
stub lattice under the tight-binding limit. In this structure,
one can make the band transition between the flat band and
nonflat band by simply adding the higher-order modulation
to introduce the long-range couplings in the frequency dimen-
sion, i.e., with an additional modulation frequency Ω, which
makes the modulation 2g cosðΩt=2þ ϕÞ þ 2g0 cosðΩtþ ϕ0Þ.
The second term in the modulation brings next-nearest-nearby
couplings between two nearby resonant modes An (or Cn).
In the experiment, we apply the EOM in ring Awith the corre-
sponding form of VM cosðΩMtþ ϕÞ þ VM

0 cosð2ΩMtþ ϕ0Þ,
where ΩM ¼ 2π · 10 MHz and ϕ ¼ ϕ0 ¼ −0.5π, and perform
the measurements in the case of B in → B out, which are shown
in Fig. 5. Without higher-order modulation [see Fig. 5(a1) with
VM

0 ¼ 0], the system exhibits the feature of the flat band, which
is the same as Figs. 2(c1) and 2(c2). Once the higher-order
modulation term is added into the EOM (VM

0 ≠ 0), the middle
band gradually turns dispersive, while the upper and lower
dispersive bands start to show the nonsymmetrical feature,
as shown in Figs. 5(b1)–5(d1). In addition, the gap throughout
the entire kf space gets closed if VM

0 becomes larger [see
Fig. 5(d1)]. We, therefore, show the transition from flat to
nonflat bands in Figs. 5(a1)–5(d1), which are in excellent agree-
ment with the simulation results depicted in Figs. 5(a2)–5(d2).
The middle band exhibits a dispersive trend once the larger
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Fig. 3 Band structure measurements for the case of A in → A out. (a1)–(c1) Experimentally ob-
served band structures varied with VM . (a2)–(c2) Simulation results of the projected intensity
distribution of the band structure on modes Ak and Ck , based on Eqs. (4), (5) and (7), (8), with
κ ¼ 0.06Ω and ϕ ¼ −0.5π. (a3)–(c3) Transmission spectra measured from the drop port of ring A.
The bottom horizontal axis in (a1)–(c2) represents one roundtrip time in ring A with the period
of 4π=Ω.
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long-range couplings are added, which can lead to the delocal-
ization effect, different from the localization effect observed in
Fig. 4. We present this transition between localization and delo-
calization of light in the frequency dimension with simulation
results shown in Fig. S3 in the Supplementary Material. Such
an opportunity to dynamically introduce the band transition
could be useful for light stopping, which has been proposed
in theory.55,56

4 Conclusion
We have experimentally demonstrated a synthetic photonic
stub lattice along the frequency axis of light, constructed by
two coupled fiber ring resonators of different lengths. The
flat-band feature is observed under two cases by selectively
choosing the input and output ports for excitations and transmis-
sion measurements, which shows that measured band structures
are intensity projections of the band on the different resonant
modes in kf space. We also observed the localization effect near
the flat band with distinctive features from dispersive bands and
demonstrated the flat-to-nonflat band transition by adding the
long-range couplings in modulations, characterizing the intrin-
sic physics of the synthetic stub lattice. Theoretical simulations
performed agree well with experimental results, showing unique
features of synthetic frequency dimensions in measuring signals
of superposition modes. The construction of the stub lattice in
two coupled rings of different lengths proves the experimental
feasibility of connecting multiple rings of different types to con-
struct a complicated lattice beyond the line or square geometry
in the synthetic space. Our work also highlights potential toward
non-Hermitian/topological57–62 and quantum photonics63–66 in
coupled modulated ring resonator systems.
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