• Photonics Research
  • Vol. 7, Issue 11, A45 (2019)
Ziv Aqua1, M. S. Kim2, and Barak Dayan1、*
Author Affiliations
  • 1AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
  • 2QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
  • show less
    DOI: 10.1364/PRJ.7.000A45 Cite this Article Set citation alerts
    Ziv Aqua, M. S. Kim, Barak Dayan. Generation of optical Fock and W states with single-atom-based bright quantum scissors[J]. Photonics Research, 2019, 7(11): A45 Copy Citation Text show less
    References

    [1] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, A. Zeilinger. Experimental test of quantum nonlocality in three-photon Greenberger-Horne–Zeilinger entanglement. Nature, 403, 515-519(2000).

    [2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895-1899(1993).

    [3] H. Jeong, M. S. Kim, J. Lee. Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A, 64, 052308(2001).

    [4] . A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys., 7, 962-965(2011).

    [5] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [6] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger. Experimental one-way quantum computing. Nature, 434, 169-176(2005).

    [7] K. Azuma, K. Tamaki, H.-K. Lo. All-photonic quantum repeaters. Nat. Commun., 6, 6787(2015).

    [8] F. Dell’Anno, S. De Siena, F. Illuminati. Multiphoton quantum optics and quantum state engineering. Phys. Rep., 428, 53-168(2006).

    [9] L.-M. Duan, M. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [10] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, G. Rempe. Deterministic creation of entangled atom–light Schrödinger-cat states. Nat. Photonics, 13, 110-115(2019).

    [11] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrodinger kittens for quantum information processing. Science, 312, 83-86(2006).

    [12] K. Vogel, V. Akulin, W. Schleich. Quantum state engineering of the radiation field. Phys. Rev. Lett., 71, 1816-1819(1993).

    [13] M. Dakna, J. Clausen, L. Knöll, D.-G. Welsch. Generation of arbitrary quantum states of traveling fields. Phys. Rev. A, 59, 1658-1661(1999).

    [14] J. Fiurášek, R. García-Patrón, N. J. Cerf. Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions. Phys. Rev. A, 72, 033822(2005).

    [15] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett., 87, 050402(2001).

    [16] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier. Generation of optical Schrodinger cats from photon number states. Nature, 448, 784-786(2007).

    [17] I. Afek, O. Ambar, Y. Silberberg. High-noon states by mixing quantum and classical light. Science, 328, 879-881(2010).

    [18] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett., 82, 1345-1349(1999).

    [19] D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, T. Jennewein. Direct generation of three-photon polarization entanglement. Nat. Photonics, 8, 801-807(2014).

    [20] M. A. Nielsen. Optical quantum computation using cluster states. Phys. Rev. Lett., 93, 040503(2004).

    [21] J. Wenger, R. Tualle-Brouri, P. Grangier. Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett., 92, 153601(2004).

    [22] A. Zavatta, S. Viciani, M. Bellini. Quantum-to-classical transition with single-photon-added coherent states of light. Science, 306, 660-662(2004).

    [23] V. Parigi, A. Zavatta, M. Kim, M. Bellini. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science, 317, 1890-1893(2007).

    [24] D. F. Walls. Squeezed states of light. Nature, 306, 141-146(1983).

    [25] D. T. Pegg, L. S. Phillips, S. M. Barnett. Optical state truncation by projection synthesis. Phys. Rev. Lett., 81, 1604-1606(1998).

    [26] S. Rosenblum, O. Bechler, I. Shomroni, Y. Lovsky, G. Guendelman, B. Dayan. Extraction of a single photon from an optical pulse. Nat. Photonics, 10, 19-22(2016).

    [27] S. Rosenblum, A. Borne, B. Dayan. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction. Phys. Rev. A, 95, 033814(2017).

    [28] O. Bechler, A. Borne, S. Rosenblum, G. Guendelman, O. E. Mor, M. Netser, T. Ohana, Z. Aqua, N. Drucker, R. Finkelstein, Y. Lovsky, R. Bruch, D. Gurovich, E. Shafir, B. Dayan. A passive photon-atom qubit swap operation. Nat. Phys., 14, 996-1000(2018).

    [29] D. Pinotsi, A. Imamoglu. Single photon absorption by a single quantum emitter. Phys. Rev. Lett., 100, 093603(2008).

    [30] G. Lin, X. Zou, X. Lin, G. Guo. Heralded quantum memory for single-photon polarization qubits. Europhys. Lett., 86, 30006(2009).

    [31] K. Koshino, S. Ishizaka, Y. Nakamura. Deterministic photon-photon swap gate using a Λ system. Phys. Rev. A, 82, 010301(2010).

    [32] M. Bradford, J.-T. Shen. Single-photon frequency conversion by exploiting quantum interference. Phys. Rev. A, 85, 043814(2012).

    [33] K. Koshino, K. Inomata, Z. Lin, Y. Tokunaga, T. Yamamoto, Y. Nakamura. Theory of deterministic entanglement generation between remote superconducting atoms. Phys. Rev. Appl., 7, 064006(2017).

    [34] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 345, 903-906(2014).

    [35] K. Inomata, K. Koshino, Z. Lin, W. Oliver, J. Tsai, Y. Nakamura, T. Yamamoto. Microwave down-conversion with an impedance-matched Λ system in driven circuit QED. Phys. Rev. Lett., 113, 063604(2014).

    [36] K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T. Yamamoto, Y. Nakamura. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun., 7, 12303(2016).

    [37] R. Lang, M. O. Scully, W. E. Lamb. Why is the laser line so narrow? A theory of single-quasimode laser operation. Phys. Rev. A, 7, 1788-1797(1973).

    [38] J. Gea-Banacloche, N. Lu, L. M. Pedrotti, S. Prasad, M. O. Scully, K. Wódkiewicz. Treatment of the spectrum of squeezing based on the modes of the universe. I. Theory and a physical picture. Phys. Rev. A, 41, 369-380(1990).

    [39] C. Mehta, A. K. Roy, G. Saxena. Eigenstates of two-photon annihilation operators. Phys. Rev. A, 46, 1565-1572(1992).

    [40] J. Gea-Banacloche, W. Wilson. Photon subtraction and addition by a three-level atom in an optical cavity. Phys. Rev. A, 88, 033832(2013).

    [41] Q. Turchette, R. Thompson, H. Kimble. One-dimensional atoms. Appl. Phys. B, 60, S1-S10(1995).

    [42] C. Gardiner, M. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [43] C. Gardiner. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett., 70, 2269-2272(1993).

    [44] H. Carmichael. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett., 70, 2273-2276(1993).

    [45] J. Gea-Banacloche. Space-time descriptions of quantum fields interacting with optical cavities. Phys. Rev. A, 87, 023832(2013).

    [46] S. Rosenblum, S. Parkins, B. Dayan. Photon routing in cavity QED: beyond the fundamental limit of photon blockade. Phys. Rev. A, 84, 033854(2011).

    [47] M. Um, J. Zhang, D. Lv, Y. Lu, S. An, J.-N. Zhang, H. Nha, M. Kim, K. Kim. Phonon arithmetic in a trapped ion system. Nat. Commun., 7, 11410(2016).

    [48] N. Lutkenhaus, S. M. Barnett. Nonclassical effects in phase space. Phys. Rev. A, 51, 3340-3342(1995).

    [49] S. L. Braunstein, A. Mann. Measurement of the bell operator and quantum teleportation. Phys. Rev. A, 51, R1727-R1730(1995).

    [50] J. Tiedau, T. J. Bartley, G. Harder, A. E. Lita, S. W. Nam, T. Gerrits, C. Silberhorn. On the scalability of parametric down-conversion for generating higher-order Fock states(2019).

    [51] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

    [52] Y.-M. He, J. Liu, S. Maier, M. Emmerling, S. Gerhardt, M. Davanço, K. Srinivasan, C. Schneider, S. Höfling. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica, 4, 802-808(2017).

    [53] R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, P. Lodahl. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 4, 178-184(2017).

    [54] F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, P. G. Kwiat. Time-multiplexed heralded single-photon source. Optica, 2, 1010-1013(2015).

    [55] A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J.-S. Lauret, B. Besga, J. Estève, J. Reichel, C. Voisin. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett., 116, 247402(2016).

    [56] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam. Detecting single infrared photons with 93% system efficiency. Nat. Photonics, 7, 210-214(2013).

    [57] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [58] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [59] M. H. Pfeiffer, J. Liu, M. Geiselmann, T. J. Kippenberg. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl., 7, 024026(2017).

    [60] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, K. Vahala. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photonics, 12, 297-302(2018).

    [61] A. Borne, B. Dayan. Deterministic ion-photon qubit exchange in realistic ion cavity-QED systems without strong coupling(2019).

    [62] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, K. Srinivasan. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun., 8, 889(2017).

    [63] A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter, H. J. Kimble. Atom-light interactions in photonic crystals. Nat. Commun., 5, 3808(2014).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    Ziv Aqua, M. S. Kim, Barak Dayan. Generation of optical Fock and W states with single-atom-based bright quantum scissors[J]. Photonics Research, 2019, 7(11): A45
    Download Citation