• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1208003 (2021)
Guojun Liang1, Yanlu Li1、*, Lei Wei2, Xiufeng Cheng1, and Xian Zhao3、**
Author Affiliations
  • 1Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
  • 2Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
  • 3Center for Optics Research and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.1208003 Cite this Article Set citation alerts
    Guojun Liang, Yanlu Li, Lei Wei, Xiufeng Cheng, Xian Zhao. Thermal Transport Behavior of Quaternary Nonlinear Optical Crystal Li2BaSnS4: First Principle Investigation[J]. Chinese Journal of Lasers, 2021, 48(12): 1208003 Copy Citation Text show less
    References

    [1] Pushkarsky M B, Dunayevskiy I G, Prasanna M et al. High-sensitivity detection of TNT[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 19630-19634(2006). http://www.ncbi.nlm.nih.gov/pubmed/?term=17164325[uid]

    [2] Li J W, Song Y S, Liu T C et al. A preprocessing method for infrared image based on maritime target tracking performance[J]. Laser & Optoelectronics Progress, 57, 101023(2020).

    [3] Cotter D, Manning R J, Blow K J et al. Nonlinear optics for high-speed digital information processing[J]. Science, 286, 1523-1528(1999). http://europepmc.org/abstract/med/10567251

    [4] Pushkarsky M, Tsekoun A, Dunayevskiy I G et al. Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 10846-10849(2006). http://europepmc.org/articles/PMC1544136/

    [5] Li W D, Liu J Q, Zhu Y D et al. LEO-LEO infrared laser occultation technique to measure atmospheric carbon dioxide concentration[J]. Chinese Journal of Lasers, 46, 0810001(2019).

    [6] He Y X, Guo Y W, Xu D G et al. High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference-frequency generation[J]. Optics Express, 27, 9241-9249(2019).

    [7] Chung I, Kanatzidis M G. Metal chalcogenides: a rich source of nonlinear optical materials[J]. Chemistry of Materials, 26, 849-869(2014). http://pubs.acs.org/doi/10.1021/cm401737s

    [8] Wei L, Fu Y B, Li J R et al. Theoretical study on the intrinsic source of the large thermal conductivity of Li-based chalcogenide nonlinear optical crystals: from AgGaS2 to LiGaS2[J]. Crystal Growth & Design, 20, 4150-4156(2020). http://pubs.acs.org/doi/10.1021/acs.cgd.0c00415

    [9] Wu K, Zhang B B, Yang Z H et al. New compressed chalcopyrite-like Li2BaMIVQ4 (MIV=Ge, Sn; Q=S, Se): promising infrared nonlinear optical materials[J]. Journal of the American Chemical Society, 139, 14885-14888(2017). http://pubs.acs.org/doi/10.1021/jacs.7b08966

    [10] Brant J A, Clark D J, Kim Y S et al. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors[J]. Inorganic Chemistry, 54, 2809-2819(2015).

    [11] Liang F, Kang L, Lin Z S et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J]. Coordination Chemistry Reviews, 333, 57-70(2017). http://www.sciencedirect.com/science/article/pii/S0010854516303745

    [12] Hou D W, Nissimagoudar A S, Bian Q et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 58, 93-98(2019).

    [13] Sun S W, Qi N J, Kong Y et al. Three-dimensional stress fields of laser damaged fused silica[J]. Chiese Journal of Lasers, 48, 0101001(2021).

    [14] Tian Y H, Wang J P, Yang W H et al. Frequency doubling system for integrated quantum squeezed light source based on MgO∶LiNbO3 crystal[J]. Chinese Journal of Lasers, 47, 1108001(2020).

    [15] Li K, Yang S H, Wang X et al. Highly efficient intensity-modulated 532-nm laser based on second harmonic generation with MgO∶PPLN cascade[J]. Acta Optica Sinica, 39, 0614003(2019).

    [16] Wei L, Wu D C, Liu D et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 48, 0101002(2021).

    [17] Ward A, Broido D A, Stewart D A et al. Ab initio theory of the lattice thermal conductivity in diamond[J]. Physical Review B, 80, 125203(2009). http://adsabs.harvard.edu/abs/2009PhRvB..80l5203W

    [18] Li W, Carrete J, A Katcho N et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 185, 1747-1758(2014).

    [19] Zhong Q, Dai Z H, Liu J Y et al. A comprehensive study of phonon thermal transport in 2D IV-VI semiconductors MX (M = Ge, Sn; X = S, Se)[J]. Physics Letters A, 384, 126676(2020). http://www.sciencedirect.com/science/article/pii/S0375960120305430

    [20] Lindsay L, Broido D A. Three-phonon phase space and lattice thermal conductivity in semiconductors[J]. Journal of Physics, 20, 165209(2008). http://adsabs.harvard.edu/abs/2008jpcm...20p5209l

    [21] Fabian J, Allen P B. Thermal expansion and Grüneisen parameters of amorphous silicon: a realistic model calculation[J]. Physical Review Letters, 79, 1885-1997(1997). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000079000010001885000001&idtype=cvips&gifs=Yes

    [22] Togo A, Oba F, Tanaka I et al. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 78, 134106(2008).

    [23] Togo A, Chaput L, Tanaka I et al. Distributions of phonon lifetimes in Brillouin zones[J]. Physical Review B, 91, 094306(2015). http://d.wanfangdata.com.cn/periodical/fb2566277483fa311f2cb98c8d26d45a

    [24] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 54, 11169-11186(1996). http://europepmc.org/abstract/MED/9984901

    [25] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 59, 1758-1775(1999). http://www.tandfonline.com/servlet/linkout?suffix=CIT0032&dbid=16&doi=10.1080%2F21663831.2013.824516&key=10.1103%2FPhysRevB.59.1758

    [26] Perdew J P, Burke K, Ernzerhof M et al. Generalized gradient approximation made simple[J]. Physical Review Letters, 77, 3865-3868(1996). http://www.researchgate.net/publication/288115533_Generalized_Gradient_Approximation_Made_Simple

    [27] Einhorn M, Williamson B A D, Scanlon D O et al. Computational prediction of the thermoelectric performance of LaZnOPn (Pn = P, As)[J]. Journal of Materials Chemistry A, 8, 7914-7924(2020).

    [28] Liang X, Wang C G. Electron and phonon transport anisotropy of ZnO at and above room temperature[J]. Applied Physics Letters, 116, 043903(2020).

    [29] Zhang Z Y, Zhang R Q, Qi N et al. Microscopic origin of the extremely low thermal conductivity and outstanding thermoelectric performance of BiSbX3 (X = S, Se) revealed by first-principles study[J]. Physical Chemistry Chemical Physics, 22, 15559-15566(2020). http://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp01231a/unauth

    [30] Wei L, Lü X, Yang Y G et al. Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X = Si, Ge, and Sn)[J]. Inorganic Chemistry, 58, 4320-4327(2019).

    Guojun Liang, Yanlu Li, Lei Wei, Xiufeng Cheng, Xian Zhao. Thermal Transport Behavior of Quaternary Nonlinear Optical Crystal Li2BaSnS4: First Principle Investigation[J]. Chinese Journal of Lasers, 2021, 48(12): 1208003
    Download Citation