• Photonics Research
  • Vol. 8, Issue 8, 1301 (2020)
Yifan Li1, Yating Zhang1、*, Zhiliang Chen1, Qingyan Li1, Tengteng Li1, Mengyao Li1, Hongliang Zhao1, Quan Sheng1, Wei Shi1, and Jianquan Yao1、2
Author Affiliations
  • 1Key Laboratory of Optoelectronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2e-mail: jqyao@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.395090 Cite this Article Set citation alerts
    Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 1301 Copy Citation Text show less
    References

    [1] Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, J.-L. Sun. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interfaces, 10, 36304-36311(2018).

    [2] J. T. W. Yeow, M. Zhang. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite. Carbon, 156, 339-345(2020).

    [3] Q.-M. Wang, Z.-Y. Yang. Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity. Carbon, 138, 90-97(2018).

    [4] M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, K.-S. An. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon, 116, 167-173(2017).

    [5] X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, J. Stake. A flexible graphene terahertz detector. Appl. Phys. Lett., 111, 021102(2017).

    [6] M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, A. Tredicucci. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett., 12, 96-101(2012).

    [7] C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, W. Lu. Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. NPG Asia Mater., 10, 318-327(2018).

    [8] Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, Z. Zhao. Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene. ACS Appl. Mater. Interfaces, 11, 6411-6420(2019).

    [9] Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, Z. Zhao. Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal. ACS Photon., 6, 895-903(2019).

    [10] C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, E. Guilmeau. Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials. J. Therm. Anal. Calorim., 131, 3151-3156(2018).

    [11] A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, I. I. Bobrinetskiy. Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions. ACS Photon., 5, 3107-3115(2018).

    [12] S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, H. Linke. Bipolar photothermoelectric effect across energy filters in single nanowires. Nano Lett., 17, 4055-4060(2017).

    [13] D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, A. Castellanos-Gomez. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett., 14, 5846-5852(2014).

    [14] M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, A. Castellanos-Gomez. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett., 13, 358-363(2013).

    [15] V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, R. F. Oulton. Plasmon induced thermoelectric effect in graphene. Nat. Commun., 9, 5190(2018).

    [16] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, P. L. McEuen. Photo-thermoelectric effect at a graphene interface junction. Nano Lett., 10, 562-566(2010).

    [17] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, M. S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814-819(2014).

    [18] W. Liu, W. Wang, Z. Guan, H. Xu. A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale, 11, 4918-4924(2019).

    [19] C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, W. Lu. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection. Carbon, 130, 233-240(2018).

    [20] X. Lu, P. Jiang, X. Bao. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat. Commun., 10, 138(2019).

    [21] Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, J. Yao. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams. Photon. Res., 8, 368-374(2020).

    [22] X. Jiang, J. Zhao, Y.-L. Li, R. Ahuja. Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction. Adv. Funct. Mater., 23, 5846-5853(2013).

    [23] M. T. Pettes, H. Ji, R. S. Ruoff, L. Shi. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett., 12, 2959-2964(2012).

    [24] R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, W. Ji. Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano, 5, 5969-5975(2011).

    [25] J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, Y. Wang. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity. Carbon, 153, 274-284(2019).

    [26] H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [27] Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater., 28, 1704363(2017).

    [28] L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, N.-E. Lee. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater., 25, 883-890(2015).

    [29] T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, Z. Liu. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett., 19, 1494-1503(2019).

    [30] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater., 24, 3021-3026(2014).

    [31] K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, Y. Chen. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv., 5, eaav2589(2019).

    [32] X. Cao, Z. Yin, H. Zhang. Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci., 7, 1850-1865(2014).

    [33] W. Xu, T.-W. Lee. Recent progress in fabrication techniques of graphene nanoribbons. Mater. Horiz., 3, 186-207(2016).

    [34] H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, H.-S. P. Wong. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett., 14, 3214-3219(2014).

    [35] S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, K. Kang. Neurite guidance on laser-scribed reduced graphene oxide. Nano Lett., 18, 7421-7427(2018).

    [36] X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, M. Gu. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 9433(2015).

    [37] J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, I.-K. Oh. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano, 8, 2986-2997(2014).

    [38] J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, X. Zhan. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C, 121, 4917-4923(2017).

    [39] S. S. Shin, S. J. Lee, S. I. Seok. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater., 29, 1900455(2019).

    [40] G. J. Snyder, E. S. Toberer. Complex thermoelectric materials. Nat. Mater., 7, 105-114(2008).

    [41] A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, E. Horvath. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett., 5, 2488-2492(2014).

    [42] L. Zhang, X. Su, Z. Sun, Y. Fang. Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films. Appl. Surf. Sci., 351, 693-696(2015).

    [43] K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans., 46, 1766-1769(2017).

    [44] X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, W. Lei. Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures. Nanoscale, 10, 10182-10189(2018).

    [45] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun., 6, 8238(2015).

    [46] H. Tian, Y. Cao, J. Sun, J. He. Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors. RSC Adv., 7, 46536(2017).

    [47] X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, T. L. Ren. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun., 6, 7767(2015).

    Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 1301
    Download Citation