• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0524001 (2021)
Jing Zhao1, Jiaxian Wang1、*, Weibin Qiu2, and Zeyang Zhao2
Author Affiliations
  • 1School of Electronics and Electrical Engineering, Xiamen Institute of Technology, Xiamen , Fujian 361021, China
  • 2College of Information Science and Engineering, Huaqiao University, Xiamen , Fujian 361021, China
  • show less
    DOI: 10.3788/LOP202158.0524001 Cite this Article Set citation alerts
    Jing Zhao, Jiaxian Wang, Weibin Qiu, Zeyang Zhao. Investigation of Sensing Characteristic of Graphene Metamaterial Based on Fano Resonance[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0524001 Copy Citation Text show less
    References

    [1] Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [2] Tao H, Kadlec E A, Strikwerda A C et al. Microwave and terahertz wave sensing with metamaterials. Optics Express, 19, 21620-21626(2011).

    [3] He J, Fan C, Ding P et al. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements. Scientific Reports, 6, 20777(2016).

    [4] Geng Z, Zhang X, Fan Z et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Scientific Reports, 7, 16378(2017).

    [5] Zhang R, Chen Q M, Liu K et al. Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples. IEEE Transactions on Terahertz Science and Technology, 9, 209-214(2019).

    [6] Cong L Q, Tan S Y, Yahiaoui R et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Applied Physics Letters, 106, 031107(2015).

    [7] Yang Y P, Xu D Q, Zhang W L. High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor. Optics Express, 26, 31589-31598(2018).

    [8] Chen M, Fan F, Shen S et al. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial. Applied Optics, 55, 6471-6474(2016).

    [9] Hu F R, Guo E Z, Xu X et al. Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor. Optics Communications, 388, 62-67(2017).

    [10] Pan W, Yan Y J, Ma Y et al. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications, 431, 115-119(2019).

    [11] Zhang Y J, Wang S F, Zhong G C et al. Metamaterial-based terahertz multi-band sensors integrated with microfluidic channels. Chinese Journal of Lasers, 46, 0614038(2019).

    [12] Chen J, Badioli M, Alonso-González P et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [13] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices. Chinese Journal of Lasers, 46, 0614011(2019).

    [14] Liu B, Tang C J, Chen J et al. Electrically tunable Fano resonance from the coupling between interband transition in monolayer graphene and magnetic dipole in metamaterials. Scientific Reports, 7, 17117(2017).

    [15] Ahmadivand A, Gerislioglu B, Tomitaka A et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells. Biomedical Optics Express, 9, 373-386(2018).

    [16] Park S J, Cha S H, Shin G A et al. Sensing viruses using terahertz nano-gap metamaterials. Biomedical Optics Express, 8, 3551-3558(2017).

    [17] Wang K, Fan W H, Chen X et al. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale. Optics Communications, 439, 61-65(2019).

    [18] Liu F, Zhang K L. Fano resonances in metallic nanorod oligomer with transverse excitation. Laser & Optoelectronics Progress, 56, 012501(2019).

    [19] Wang M M, Yun L Y, Wang Y F et al. Plasma refractive index nanosensor based on Fano resonance. Laser & Optoelectronics Progress, 57, 052401(2020).

    [20] Luk'yanchuk B, Zheludev N I, Maier S A et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9, 707-715(2010).

    [21] Ding C F, Jiang L K, Wu L et al. Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials. Optics Communications, 350, 103-107(2015).

    [22] Li Q, Cong L Q, Singh R et al. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. Nanoscale, 8, 17278-17284(2016).

    [23] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 103, 064302(2008).

    [24] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter, 19, 026222(2007).

    [25] Chen X, Fan W H, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon, 133, 416-422(2018).

    [26] Mousavi S H, Kholmanov I, Alici K B et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Letters, 13, 1111-1117(2013).

    [27] Tang W, Wang L, Chen X et al. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. Nanoscale, 8, 15196-15204(2016).

    [28] Yan X, Yang M S, Zhang Z et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics, 126, 485-492(2019).

    Jing Zhao, Jiaxian Wang, Weibin Qiu, Zeyang Zhao. Investigation of Sensing Characteristic of Graphene Metamaterial Based on Fano Resonance[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0524001
    Download Citation