• Infrared and Laser Engineering
  • Vol. 54, Issue 2, 20240400 (2025)
Mu LI1,2, Yilang ZHANG1, and Xizheng KE1,*
Author Affiliations
  • 1College of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
  • 2Shaanxi Provincial Key Laboratory of Intelligent Collaborative Network, Xi'an 710048, China
  • show less
    DOI: 10.3788/IRLA20240400 Cite this Article
    Mu LI, Yilang ZHANG, Xizheng KE. Infrared image enhancement algorithm based on multi-scale feature extraction and fusion[J]. Infrared and Laser Engineering, 2025, 54(2): 20240400 Copy Citation Text show less
    Complete network framework
    Fig. 1. Complete network framework
    Multi-scale adaptive feature extraction module
    Fig. 2. Multi-scale adaptive feature extraction module
    The process of using multi-scale convolution to extract the detail information of infrared images
    Fig. 3. The process of using multi-scale convolution to extract the detail information of infrared images
    Multi-scale adaptive feature extraction module
    Fig. 4. Multi-scale adaptive feature extraction module
    Global attention mechanism
    Fig. 5. Global attention mechanism
    Channel attention submodule
    Fig. 6. Channel attention submodule
    Spatial attention submodule
    Fig. 7. Spatial attention submodule
    Feature fusion and image reconstruction module
    Fig. 8. Feature fusion and image reconstruction module
    Example of building the dataset (red dashed line is the original image)
    Fig. 9. Example of building the dataset (red dashed line is the original image)
    Comparison of six image enhancement methods under Self-dataset
    Fig. 10. Comparison of six image enhancement methods under Self-dataset
    Comparison of six image enhancement methods under MSRS
    Fig. 11. Comparison of six image enhancement methods under MSRS
    Comparison of six image enhancement algorithms for object detection
    Fig. 12. Comparison of six image enhancement algorithms for object detection
    Analysis of the results of the fire hazard algorithm
    Fig. 13. Analysis of the results of the fire hazard algorithm
    DatasetmethodSelf-dataset
    PSNRSSIMCSSFLaplacianEntropy
    Ours11.580.6410.9636.702504.235.40
    EnlightenGAN8.310.5820.9212.46136.825.02
    RUAS13.820.5700.9624.76628.665.18
    URetines_Net7.710.5780.8724.751347.585.21
    ZeroDCE11.070.6350.9418.32358.105.04
    ZeroDCEP11.160.6300.9518.72361.405.31
    Table 1. Comparison of enhancement effects of different methods(Self-dataset)
    DatasetmethodMSRS
    PSNRSSIMCSSFLaplacianEntropy
    Ours13.060.6150.9611.90693.44.74
    EnlightenGAN8.810.5580.836.6282.764.23
    RUAS16.170.5380.939.08136.283.44
    URetines_Net7.470.5980.8311.53277.184.73
    ZeroDCE11.540.5720.8711.64305.704.68
    ZeroDCEP7.460.5980.8311.53277.184.72
    Table 2. Comparison of enhancement effects of different methods(MSRS dataset)
    Network stageSSIMLaplacianEntropy
    10.451543.593.98
    1,3,50.591846.344.56
    1,2,3,4,5,60.642504.235.40
    Table 3. Comparison of enhancement effects at different network stage
    MethodPSNRSSIMSFEntropy
    1)9.560.648.6345.01
    2)7.150.618.8314.74
    3)6.340.548.4644.61
    4)7.990.337.8004.75
    5)8.680.327.8974.75
    6)7.970.267.8604.72
    Table 4. Structure and validation of improved effectiveness
    MethodSSIMCSSF
    {1,2}0.580.925.17
    {1,3}0.640.965.40
    {1,4}0.550.824.46
    Table 5. Validity verification of different expansion rates
    MethodPSNRCSRunning time/s
    1)12.160.972.1
    2)7.840.823.2
    Table 6. Validity verification of different pixel parameters
    MethodEarly fire detection accuracyAccuracy of early fire detection for non hazardous materialsAccuracy of early fire detection for hazardous materialsNoise factor
    Ours97.86%98.59%97.13%1.02%
    EnlightenGAN88.75%89.48%88.02%5.6%
    RUAS91.90%92.88%90.92%6.23%
    URetinex_Net81.55%82.62%80.48%14.81%
    ZeroDCE92.91%93.90%91.88%2.95%
    ZeroDCEP93.41%94.66%92.76%3.65%
    Table 7. Comparison of early fire detection results of different algorithms
    Mu LI, Yilang ZHANG, Xizheng KE. Infrared image enhancement algorithm based on multi-scale feature extraction and fusion[J]. Infrared and Laser Engineering, 2025, 54(2): 20240400
    Download Citation